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Abstract 

 

Because of the lightning-fast expansion of the Internet of Things (IoT) technologies, an enormous amount of data has been 

produced. This traffic can be mined for information that can be used to identify and avoid intrusions into IoT networks. 

Despite the significant efforts that have been put into labeling Internet of Things traffic records, the total number of labeled 

records is still quite low, which makes it more difficult to detect intrusions. This study introduces a semi-supervised deep 

learning approach for intrusion detection (S2T-Net), in which we propose a temporal transformer module to empower the 

model to learn valuable interactions in cellular data. An improved spatial transformer is presented to capture local 

representation in the cellular traffic flow. At the same time, a multilevel semi-supervised training technique is used to account 

for the consecutive structure of the IoT traffic information. In order to provide effective real-time threat intelligence, the 

suggested S2T-Net can be tightly coupled into a cellular IoT network. Last but not least, empirical assessments on two current 

databases (CIC-IDS2017 and CIC-IDS2018) show that S2T-Net boosts intrusion detection accuracy and resilience while 

retaining resource-efficient computing. 

 

Keywords: Cellular Networks; Internet of Things (IoT); Deep Learning; Semi-supervised Learning; Anomaly 

Detection; Security. 

 

1. Introduction 

 

The rapid integration of cellular technologies into the internet of things (IoT) has allowed for the creation of 

numerous cutting-edge applications and services such as "smart" versions of traditional industries like 

manufacturing and hospital, and "dumb" ones like transportation. Lots and lots of cellular IoT traffic are 

transmitted between existing cellular IoT entities to send data like switch control, smart device management, 

connectivity information, and maintenance and repair specifics; this knowledge can be damaged by a wide range 

of problems initiated by manufactured or natural anomalies. As a result, effective intrusion detection has become 

a crucial feature in cellular IoT[1], [2]. 

 

Intrusion Detection Systems, often known as IDS, have been developed in order to identify intrusions that have 

circumvented traditional security measures. This serves as a very important second line of defense for the purpose 

of securing cellular IoT. IDS that are based on anomaly detection will establish a profile of typical behavior and 

will only label activities as intrusions if those behaviors do not fit the usual profile. In light of this, intrusion 

detection systems (IDSs) can be split into two distinct classifications: anomaly-based IDS and signature-based 

IDS (A-IDS) [3]. Evaluating the relationship with previously learned signatures of known assaults is the method 

that the S-IDS employs in an effort to identify malicious interventions. However, as S-IDS are unable to detect 

new intrusions that have not been observed before, their workload grows as a result of the rise in the count of 

newly recognized intrusions, which leads to a rise in the number of signatures and, as a result, limits their 

responsiveness. In addition, S-IDS frequently requires the participation of human specialists in order to inspect 

 

 
 

https://doi.org/10.54216/IJWAC.040106


International Journal of Wireless and Ad Hoc Communication (IJWAC)             Vol. 04, No. 01, PP. 56-68, 2022 

57 

Doi: https://doi.org/10.54216/IJWAC.040106   
Received: December 12, 2021    Accepted: January 10, 2022 

and investigate the signatures of innovative attacks. In contrast, A-IDS is able to differentiate between unknown 

breakouts, which frequently occur in the majority of types of cellular IoT [4]. 
 

The problem of recognizing unfamiliar invasions is a specific problem for cellular IoT, which connects a broad 

variety of gadgets with varying computational power, wireless communications, storage capacity, applications, 

and operating system configurations. This presents a challenge when it comes to securing the network from 

unauthorized access. This heterogeneous nature presents a difficulty for the implementation of security 

mechanisms and raises the threat vectors, both of which contribute to cellular IoT networks being more 

susceptible to innovative and unexpected incursions. It has been demonstrated that conventional machine 

learning (ML) algorithms may effectively discern critical anomalies in the cellular network [5]. IoT traffic, and 

can therefore effectively detect cyberattacks. On the other hand, it has been shown that machine learning is 

unable to scale to extremely large databases, and it has also been demonstrated it achieves an inadequate level 

of performance when it came to finding intrusions and cyber threats in situations in which the cellular IoT nodes 

are extremely dispersed. Alternately, ongoing developments in deep learning (DL) methodologies give rise to 

different intrusion detection systems that are well-equipped to address and address the necessary incursions and 

cyberattacks, as well as varying degrees of difficulties and complexity. As a result, this work puts out the idea 

of an A-IDS based on the revised DL model [6]. 

 

Because the contextual knowledge of the cellular IoT is gathered at such a quick rate over time, manually labeling 

a massive number of cellular IoT information is a task that is becoming increasingly difficult, if not impossible 

altogether. However, just a tiny part of the cellular IoT traffic could be labeled, while the rest of the data, which 

constitutes the majority, could be left unnamed. The semi-supervised deep learning methodologies are perfectly 

adapted for a scenario and were shown to be an appropriate method for analysis and regression. This facilitates 

the generation of smart systems that can learn from massive volumes of unannotated data utilizing a small 

number of labeled examples.  It is possible to handle cellular IoT records as time-series data due to the fact that 

they are generated in consecutive order. It has been found that recurrent neural networks, or RNNs, perform 

exceptionally well when applied to this type of data and have been the subject of research. Among these, the 

long short-term memory (LSTM) and the gated recurrent unit (GRU) have become known as an improved 

version of the RNN for a variety of consecutive data functions. Several different investigations on the 

identification of intrusions and attacks have provided evidence that the RNN is effective. Even though it is not 

capable of capturing consecutive data representations, more lately, convolution neural networks (CNN) have 

been utilized for the purpose of anomaly recognition because of the spatial feature extraction ability it possesses. 

Temporal CNN (TCN) has been developed by changing the theory of CNN to add parallelism methods. TCN 

has demonstrated significant improvement over CNN due to the fact that it is able to learn long relationships 

more compellingly. In addition to this, the architectural integrity of the TCN is simpler and more accurate in 

comparison to that of the RNNs, and the TCN has achieved superior outcomes compared to those of the LSTM 

in a number of sequencing problems [7], [8]. 

 

A. Motivations 

This paper addresses a number of the constraints as well as the issues that were discovered after conducting an 

in-depth analysis of the most recent activities completed for IDS. First, in cellular IoT traffic communications, 

the examples captured at surrounding sites are connected with others, producing a form of residential 

dependency. This interdependence is created by associating the observations. Second, the composition of cellular 

IoT traffic flows is heterogeneous, which means that the involvement of each type of data is not necessarily the 

same [9]. This can occur in either the spatial domain or the time domain. As an illustration, the spatial information 

can vary greatly because of the variations in cellular IoT devices, routers, networking protocols, and suppliers; 

in addition, the historical regularity that corresponds to the spatial information can also vary. Third, mobile IoT 

traffic examples that were collected at adjacent time frames are particularly tightly related, which means that the 

temporal context must be taken into consideration when developing new IDS. Fourth, because of the rapid and 

dramatic increase in the bulk of cellular IoT data, it is challenging to get up-to-date tagged cellular IoT traffic 

information, particularly to detect intrusions and intrusions. Learning from unlabeled data has consequently 

become an important research topic in cellular IoT systems [10]. 

 

B. Primary Contributions 

This research offers the following novel contributions to overcome the difficulties that have been listed above: 

• We present S2T-Net, a unique semi-supervised transformer network for detecting anomalies in cellular IoT by 

exploiting the advantages of both labeled and unlabeled data streams throughout training to identify incursions 

and threats in cellular IoT data.  
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• In S2T-Net, a new temporal transformer module is designed to empower the model to learn valuable 

interactions in cellular data. 

• In S2T-Net,  An improved spatial transformer is presented to capture local representation in the cellular traffic 

flow. At the same time, a multilevel semi-supervised training technique is used to account for the consecutive 

structure of the IoT traffic information 

• For the purpose of training S2T-Net, a novel semi-supervised hierarchical method is presented. In this method, 

the unlabeled cellular IoT traffic data are divided into a number of different portions that are then ordered 

sequentially. Then, the training methods are carried out in a gradual manner on each individual component, 

which allows the successive interdependencies to be maintained throughout the training process. 

 

C. Paper Structure 

The work is structured as such. The current research that is pertinent to intrusion detection in cellular IoT is 

described in Section 2. Section 3 delves into the specifics of the proposed methodology. As for the experimental 

setups, these are described in Section 4. The findings, evaluation, and related discussion may be found in Section 

5. The conclusions are presented in Section 6. 

 

2. Related Work 

 

Studies on the security of cellular IoT communications have been conducted in abundance. Creating trustworthy 

IDS in a cellular IoT -enabled setting has always been a significant obstacle, and AI-based techniques have been 

a key component in overcoming this. There are now three main schools of thought when it comes to cellular IoT 

intrusion detection: supervised, semi-supervised, and unsupervised. 

A. Supervised Anomaly Detection in Cellular IoT 

Training-supervised DL methods often use labeled cellular IoT data for either binary classification or multi-class 

classification. A lightweight DL solution (named LNN).for IoT network intrusion detection was developed by 

the authors of [11]. Due to the high computing cost associated with using high-dimensional raw traffic data, we 

apply the principal component analysis (PCA) algorithm to complete feature discretization in the information 

pretreatment step. LNN classifier utilized the expansion and contractions design, the inversion residual 

construction, and the channel shuffle algorithm to efficiently extract features with low computational overhead. 

Moreover, the DL model (named Deep-IFS) constructed by the authors of [12] used a local gated recurrent unit 

(GRU) to acquire localized depiction and multiple attention layers to obtain lengthy interactions. 

 

Although supervised techniques have made considerable strides in anomaly detection, they have not become 

widely used due to a lack of annotated cellular IoT data, which necessitates extensive work and a lengthy time 

commitment. Moreover, when information is not distributed uniformly among classes, their performance 

deteriorates (class imbalance problem). This inspired us to create effective A-IDS using semi-supervised 

learning. 

B. Semi-supervised Anomaly Detection in Cellular IoT 

In situations when only a limited number of labeled examples are accessible, semi-supervised methods are useful 

because they train a specific classifier by making use of both annotated and unannotated samples. Various 

methods of this kind have been designed with the aim of detecting intrusions in cellular IoT traffic, and many of 

them have shown that they are effective. The authors of [13] developed a semisupervised hierarchy layering 

temporal convolutional network (HS-TCN), for detecting intrusion in IoT networks by training on only a tiny 

number of labeled data. Besides, the authors of [14] developed a key quality indicators-based framework that 

employs a semi-supervised ML algorithm, namely, iterative positive sample aided one-class support vector 

machine (IPS-OCSVM) to detect anomalies in cellular IoT. IPS-OCSVM can be implemented in four stages, the 

most important of which is employing OCSVM to combine ML with the specialized knowledge of the network 

operator. Through a soft decision, the IPS-OCSVM architecture is able to detect QoE anomalies, and its detection 

capability can be readily tuned on request. More, the authors of [15], presented a Latent Enhanced 

regression/classification Deep Generative Model (LEDGM) as a deep generative technique for addressing the 

high dimensionality anomaly detection challenge. LEDGM moves away from traditional two-stage disconnected 

models and instead uses a holistic learning approach. Further, the authors of  [16] developed a Convolutional 

Autoencoder (VAE) as a hybrid design for trajectory classification and anomaly detection. They offered a color 

gradient representation of high-level features for object trajectories of varied lengths. Later, pathways of moving 

objects recovered with the Temporally Incremental Gravitational Model (TIGM) are annotated using a semi-

supervised method for class categorization. The authors of [17], proposed a multiresolution residue temporal 

convolutional (MS-Res) component for fine-tuning the network's capacity in learning multimodal patterns, as 
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part of a semi-supervised DL model for vulnerability scanning ( known as SS-Deep-ID). To help the model zero 

in on the most relevant data as it learns, they developed a traffic attention (TA) approach for estimating the 

significance of cellular patterns and a hierarchical learning approach to better account for sequential properties 

of the IoT traffic data. 

C. Unsupervised Anomaly Detection in Cellular IoT 

Unsupervised Anomaly Detection refers to methods developed without using clean data or traffic labeling. These 

methods are preferable since they are inexpensive (because they don't have to pay for traffic labels) and they use 

the innate properties of cellular IoT traffic samples to identify and prevent various types of assaults. As a result, 

they are able to reliably detect emerging threats. Using an example, the authors of [18] investigated unsupervised 

outlier detection on multidimensional time series data in IoT systems and creates a GRU-based Gaussian Mixture 

VAE method (termed GGM-VAE).  specifically, they utilized Gaussian Mixture priors in the higher dimensional 

space to characterize the different datasets and Gated Recurrent Unit (GRU) cells to uncover the relationships 

across time series information. Some prior works use overly simplistic distributions for Gaussian Mixture priors, 

which severely limits their capacity to detect data patterns. More, the authors of [19] presented a stacked 

autoencoder (AE) for intelligent anomaly detection by narrowing down the feature set by unsupervised learning 

from the input networking flows’ features. The authors of [20] used noisy pseudo-normal data, to develop a 

unique self-supervised approach for anomaly identification in in-vehicle networks. The generator and detector 

in the proposed method are both deep-learning models that are responsible for producing noised pseudo-normal 

data and identifying outliers, respectively. the generator is trained using just "regular" network traffic in order to 

produce "normal"-looking generated traffic. Then, the abnormality detector was taught to distinguish between 

authentic traffic and noised faux normal traffic.  

The two main problems with unsupervised methods remain, despite their benefits. To begin, their performance 

is not as strong as supervised methods, especially when it comes to recognizing previously discovered threats. 

Secondly, their high processing complexity prevents them from being used in genuine or in applications with 

limited cellular IoT resources. 

 

In essence, current semi-supervised methods exhibit a significant performance versus computational cost 

tradeoff. Since spatial abstractions and chronological properties of cellular IoT traffic data are crucial to 

achieving maximum performance, we propose using TCN instead of recurrent networks. As a further step, we 

include a learning algorithm to assist the net zero in on relevant features, which in turn reduces the effect of 

random data and accelerates the learning process. The present semi-supervised techniques also fail to preserve 

the periodic properties of cellular IoT data while being trained. Therefore, we suggest a multilevel training 

structure for the compact S2T-Net. 
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3. Methodology 

 

In this section, a comprehensive overview of the proposed semi-supervised DL for recognizing attacks in 

cellular IoT traffic, which is referred to as S2T-Net, is presented. The architecture of S2T-Net, which can be seen 

depicted in Figure 1, is broken down into three basic modules. To begin, the temporal residual transformer block 

was suggested as a way to better hone the powers of the net when it came to acquiring the representations. 

Second, a spatial transformer block that may measure the significance of the input representation in order to 

direct the network's attention to structures that are reflective of the whole. In the end, the outputs of these modules 

are combined and then supplied into the linear layer so that the likelihood may be calculated that the base input 

refers to the particular class. 

D. Embedding 

To begin building our framework, we use embedded methods to transform the unprocessed data. As a result of 

the fact that IP packets' origin and destination port numbers and IP addresses are encoded sequentially, network 

traffic also contains other successive features. To make use of the spatial information conveyed by the input 

Figure 1: The architecture of the proposed S2T-Net 
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features, our model employs a further positional encoding layer at the base of the encoder stack. The last input 

of the self-attention layer is the sum of the embedding and positional encoding, as the positional embedding sizes 

are the same as the input embedding sizes. In addition, sine and cosine functions at varying frequencies are used 

to adopt positional encoding in the input embedding. In specific, as shown in Equation. (1) and Equation. (2), a 

cosine function is used to encode odd positions and a sine function is used to encode even positions. 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

1000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

), (1) 

 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

1000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

), (2) 

E. Spatial Transformer 

 Each spatial transformer in the spatial stack consists of a sparse multi-head self-attention (SMHA) layer 

followed by point-wise full connected layers (FCLs), for a total of six modules. Training allows for the 

hyperparameterization of the FCL size. Assigning 1024 neurons to FCLs and making 32 the padding size of 

embedding yields the best results. In addition, each sub-calculated layer's outcomes are carried onto the following 

encoder in the stack via leftover connection and layer regularisation (see Figure. 1). 

F. Temporal Transformer 

In contrast to the conventional transformer framework [21], we augment each decoder with a masked SMHA 

layer. To make our suggested S2T-Net framework more bulletproof, we arbitrarily mask some features and 

forecast them with other, unmasked features. Likewise, we use a temporal transformer stack with six temporal 

transformers to preserve our model's hierarchy organization. Rebuilding the encoder and decoder stacks allows 

us to use the SoftMax function as the final output layer for classification. Layer normalization occurs after an 

input's self-attention layer has a leftover connection to a point-wise FCLs, as shown in Figure. 1. These methods 

aim to boost the effectiveness of the model by fixing issues like the vanishing gradient and the potential 

confounders shift. Every encoder and decoder has a set of linear sublayers they call a point-wise FCL, in addition 

to the SMHA layer. Refer to Eq. (3) for an illustration; it consists of two mathematical operations triggered by 

the ReLU function. In addition, the attention matrices are transformed by performing a convolution on each row 

using the same weights. This process is seen as adding value to the embeddings by providing more specific data 

for them to work with. 

𝐹𝐶𝐿(𝑥) = 𝜎(𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2) (3) 

The masked scaled dot-product operation in SMHA for each head ℎ in the Temporal transformer is displayed in 

Figure.1. this operation receives three sets as input namely queries (𝑄  ), keys(K  ), and values (𝑉  ). The 

embedding is transformed into a matrix 𝑌 with dimensions of 𝐸 × 𝐿.  

𝑸(ℎ) = (𝑾𝑄
(ℎ)

)⊤𝒀, (4) 

 𝑲(ℎ) = (𝑾𝐾
(ℎ)

)⊤𝒀, (5) 

 𝑽(ℎ) = (𝑾𝑉
(ℎ)

)⊤𝒀, (6) 

Then, the sparse attention (SA) is computed via masked scaled dot-product as follows: 

𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑀 +
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉  (7) 

𝒁(ℎ) = [𝒛0
(ℎ)

⋯ 𝒛(𝐿−1)
(ℎ)

]

= 𝑽(ℎ) ⋅ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
1

√𝑝
(𝑸(ℎ))⊤𝑲(ℎ) + 𝑴),

 (8) 

whereby the 𝑑𝑘 denotes the scaling factor. The training gradients are stabilized by the division by 𝑑𝑘 in the above 

formula. To guarantee that the forecasting for situation 𝑖 is based only on the known outputs at locations less 

than 𝑖 . we then use 𝑀 ∈ 𝑅𝐿×𝐿  to prevent attending successive positions. Given the mask matrix 𝑀  with 

dimensions 𝐿 × 𝐿, the (𝑖, 𝑗) − 𝑡ℎ component, 𝑚𝑖,𝑗 , is characterized as: 
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𝑚𝑖,𝑗 = {
0       𝑖𝑓𝑗 ≤ 𝑖
−∞  𝑖𝑓𝑗 > 𝑖

  (9) 

Using this method, the overfitting issue can be mitigated. In addition, the SoftMax function incorporates the 

masking procedure by adding negative infinity. The SoftMax layer is then applied to each row of the matrix to 

normalize it into a posterior distribution.  

  

A new input representation is built using the dot product of the normalized matrix and the vector 𝑉. With the 

multi-head mechanism, as shown in Figure. 1, the self-attention layer's effectiveness could be further enhanced. 

When using SMHA, each attention head keeps its own 𝑄/𝐾/𝑉 weight matrix. The following formulas illustrate 

a calculation procedure analogous to the classic "one-head attention" paradigm. An 𝑖 − 𝑡ℎ attention of the sparse 

self-attention is denoted as the head. The final outcome is a concatenation of the individual results from each 

head. Because of this method, the framework can switch its attention to various locations, and it can use a variety 

of encoding threads in its attention layer. 

 
𝑆𝑀𝐻𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, … , ℎℎ)𝑊𝑂 (10) 

 ℎ𝑖 = 𝑆𝐴(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉) (11) 

 Layer normalization is performed on each sample for the sake of steady training and quick convergence. 

𝐿𝑁(𝑥) = (
𝑥 − 𝜇

𝛿
) ⋅ 𝛼 + 𝛽  (12) 

G.  Output Module  

This section describes the outputs of the output calculation in the proposed S2T-Net by exploiting feature 

representation obtained from the above modules. in particular, the output module of applied full connected layers 

(FCLs) encodes the learned features into a linear vector, according to which the probability of each class is 

computed with the SoftMax function. 
𝐹𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑓𝑓𝑐𝑙(𝐹) (13) 

 𝑆 =  𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐹𝑙𝑖𝑛𝑒𝑎𝑟) =
𝑒𝑥𝑝(𝐹𝑙𝑖𝑛𝑒𝑎𝑟)

∑ 𝑒𝑥𝑝(𝐹𝑙𝑖𝑛𝑒𝑎𝑟)
𝑐
1

 (14) 

ỹ =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑆) (15) 

whereas 𝐹𝑙𝑖𝑛𝑒𝑎𝑟  indicates the production of the FCLs, and 𝑆 signifies the softmax score. The S2T-Net is trained 

to minimize the categorical cross-entropy formulated as follows. 

𝑙𝑜𝑠𝑠 = − ∑ 𝑦𝑐

𝐶

𝑐=1

𝑙𝑜𝑔 (ỹ𝑐)  (16) 

where 𝑦𝑐 is the authentic class and ỹ𝑐 is the model-predicted, class. 

H. Semi-supervised training 

The massive volume of everyday cellular IoT traffic data combined with the time needed to label each data has 

contributed to the rise in popularity of semi-supervised training as a means to train a DL model with a mixture 

of these two types of records. Anomaly detection in cellular IoT connectivity is thus better served by a semi-

supervised algorithm. Eighty percent of the training data in this research set is unmarked. The rest 20 percent 

was used as labeled samples. Tagging the previously collected cellular IoT traffic information is generally 

recommended by the scientific community. This means that the labeled records have an earlier time than the 

unlabeled ones. Because they are collected over a lengthy time frame, the sequential pattern of the records of 

cellular IoT traffic is also a thoughtful design. In this case, the unlabeled data set has a greater temporal span 

than the labeled data set. While learning unlabeled cellular IoT data, the serial association is ignored if there is 

no corresponding action for the corresponding unenforced. Because of this, we use a hierarchical approach to 

divide the unlabeled observations into relatively little timespan. 

 

In order to train the S2T-Net in a hierarchical manner, we partitioned the unannotated samples into P subsets. 

The order of parts P-1 and P is substantial. Increasing P allows the network's learning capability to be enhanced 

with each new component deemed, thereby increasing the network's representational power. Nevertheless, 

overfitting may occur if P is set too high, and the computational time may increase as a result. Therefore, it is 
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crucial to look into the best possible value of P. The S2T-Net could then be assessed using the labeled data and 

the unlabeled data from the investigation, with each unlabeled component. A complete set was thus obtained 

after combining all relevant elements. Therefore, we can express S2T-experiment Net's on the entire collection 

of unlabeled traffic data as 

�̀�𝑢
𝑖

= 𝑆2𝑇 − 𝑁𝑒𝑡 𝑖 (𝑋𝑙 + ∑ �̀�𝑢
𝑗

𝑖

𝑗=1

) (17) 

 When the training of S2T-Net's layers is finished, the unlabeled data are evaluated after processing all unlabeled 

components. The classification of intrusions or cyberattacks is ultimately determined by combining labeled and 

experimental data and computing the judgment output thus according to: 

𝐹 = 𝑆2𝑇 − 𝑁𝑒𝑡 (𝑋𝑙 + 𝑋𝑢
̀ ) (18) 

The hierarchical structure allows for the unlabeled data to be partitioned into multiple parts within a limited time 

period, as shown above. All through the unlabeled traffic data experimental tests, the S2T-Net i-th layer 

incorporates the results of the previous experiments, indicating that the tests are carried out incrementally. This 

semi-supervised hierarchy learning is thus well suited to the traffic information in cellular IoT, as it incrementally 

accounts for the temporal interconnectedness in the unlabeled cellular IoT records. 

I. Deployment in cellular IoT 

This section discusses the deployment and operation of the proposed S2T-Net in a practical cellular setting. 

Figure. 2 shows a system diagram for the suggested S2T-Net, a semi-supervised anomaly detection framework 

for cellular IoT that makes use of edge nodes. As a general rule, the system has three main parts, or layers: the 

cloud layer, the edge node layer, and the edge layer. Models training, which necessitates access to a vast number 

of cellular IoT traffic data, is carried out from the central cloud due to its well-known high and strong 

computational resource. The cloud is an ideal location for aggregating and storing data of this magnitude. The 

model designs, previous pre-trained editions, and more training-transaction-related settings are all kept on the 

central cloud. 

To move processing to the edge nodes of the cellular IoT, the edge node layer often employs a large number of 

edge nodes. The edge node layer plays an important part in the SS-IDF because that is where intrusions would 

be detected. Essentially, each edge node has four major parts: the traffic gathering element, the traffic planning 

element, the traffic defense element, and the traffic analysis component. The edge cellular IoT's linked element 

generates traffic records, which must be captured and received by the traffic consolidation element, which then 

forwards the batched examples to the preparation process. The traffic processing part is in charge of standardizing 

the incoming batches, performing any data cleansing or normalization, and then sending them on to be processed. 

Next, the cellular IoT traffic data is generated, and the trained S2T-Net is used to classify it without contacting 

the cloud backbone, avoiding any lag.  

In this system, in binary class or multi-class scenarios, the process can be executed. After an action has been 

flagged as malicious, the relevant data is sent to a server in the cloud for analysis. For the cellular IoT, each edge 

node is liable for analyzing the local area. The corresponding edge node is always on the lookout for IoT traffic 

logs, and as a result, it collects all of them. Given significant changes in traffic on a specified zone of the 

underlying cellular IoT, if these changes are malicious, i.e., denial-of-service (DoS) occurrences, the proposed 

S2T-Net would recognize this and send the prevention and mitigation elements. To prevent the edge network 

from becoming overburdened, it may be necessary to switch certain nodes over to a different available edge node 

even if the change is harmless. The defenses module accepts the S2T-Net-generated decisions and applies any 

appropriate warnings, blocking, or removal operations from a preset module. After that, the discovered action's 

details are uploaded to the cloud, where they will be used by the Log section of the final findings [22]. 

 

The last layer is called the edge layer, and it is comprised of the network edges and end devices (such as 

notebooks, cell phones, wearables, and so on). These devices communicate with one another through cellular 

IoTs using connectivity and trying to switch gadgets, and they are concurrently linked with a particular edge 

node that acts as an information processor connected to the server. 

 

4. Experiments 

J. Dataset Description 

There is a vast selection of security databases that are available to the general public. From these, we select two 

common and large-scale databases to evaluate the effectiveness of the proposed model; these are the CIC-

IDS2017  and the CIC-IDS2018 datasets. The CIC-IDS2017 is made up of 2,830,743 IoT traffic examples that 
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were obtained in a miniature, virtual communication network. Within this network, there are six different kinds 

of anomalies that were started from a distributed network. each sample consists of 78 standard attributes and 

belongs to one of seven classes, and they include both malicious and non-malicious traffic. Additionally, there 

are 14 different types of attacks. On the opposite side, the CIC-IDS2018 is a well-known example of real-world 

heterogeneous anomaly recognition data. These data are often more difficult to work with since they contain null 

values, unnecessary features, extremes, incorrect occurrences, and significant disparities. Therefore, more 

comparable to the cellular Internet of Things found in the real world. It is composed of 16,233,002 different IoT 

traffic samples that were collected over ten days of network activity. Despite this, the samples were collected 

from a larger network known as victim networks, which consisted of 30 servers and 420 client workstations in 

total. The dataset is made up of 79 different features, and about 17% of the samples are considered to attack 

traffic. is broken out into ten separate CSV files that can be accessed and downloaded by the general public. 

K. Data preparation 

Before beginning the training, the subsequent processes for data preparation were executed on both datasets. 

First, we got rid of any unnecessary features (such as Fwd Header Length), as well as any illegal IoT flow 

records. These included records with null or missed values, as well as any fields that contained a character. 

Because of this, the CIC-IDS2017 [23] dataset was reduced by 2,867 records, while the CIC-IDS2018 dataset 

was reduced by 782,296 entries. Second, the qualitative characteristics are given a quantitative measure by way 

of one-hot encoding, which is an operation that is performed on the features. Third, according to the definitions 

found in [17],  both datasets exhibit considerable imbalance, which can on occasion lead to an increased loss. 

The concept described served as the basis for the mapping of the original labels into a new traffic labeling that 

mixes labels that are functionally identical. Samples are then normalized by scaling each of the variables in a 

consistent manner, which was the fourth step. In the fourth step, each dataset was partitioned into three primary 

groups, and the partitioning was carried out in a stratification manner in order to preserve the initial distribution 

of observations across the various classes. As a consequence of this, sixty percent of the data was used for training 

data, twenty percent of the data was utilized for validation, and twenty percent of the data was utilized for the 

test.    

L. Evaluation measures 

The following sets of assessment measures will be used in this investigation so that the performance of S2T-

Net could be estimated. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (19) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100    (20) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (21) 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (22) 

 

where the amount of positive traffic examples that were incorrectly identified as negative is denoted by the False 

Negative (FN) value. This value is sometimes referred to as the Type II error. The proportion of negative traffic 

observations that are incorrectly detected as positive is referred to as the False Positive (FP), which is also 

referred to as the Type I error. The count of positive traffic observations that have been accurately identified as 

positive is referred to as the True Positive (TP). The amount of traffic observations that were correctly identified 

as having a negative outcome is referred to as the True Negative (TN). 
 

M. Working environment  

The experiment of this work is implemented in a Python 3.9 environment, in which the model building is coded 

with TensorFlow API. This environment is installed on a computer workstation operated by Windows 10 OS 

tailored to 64- the bus system. The workstation comes with, 32 gigabytes of RAM (32 core) Intel Xeon E5-2667 

CPU@ 2.9 GHz, and NVIDIA RTX 2080 GPU. 
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5. Experimental Analysis 

N. Quantitative Results 

In the following subsection, we will explain the results that the suggested S2T-Net was able to achieve in two 

different scenarios, namely the binary-class situation and the multiclass situation. IoT traffic is categorized as 

either normal or abnormal in the classification algorithm, whereas in the latter scenario, the S2T-Net classifies 

IoT traffic observations into seven different classes. Specifically, in binary classification, the IoT traffic is 

categorized as either normal or abnormal. 

Tables I and II, correspondingly, demonstrate the confusion matrices generated by the S2T-Net when applied to 

the CIC-IDS2017 and CIC-IDS2018 datasets, in both, for the binary class situation. Even though there was a 

significant disparity between the number of benign examples and the number of attack examples, the S2T-Net 

was still able to achieve a high efficiency of greater than 99%. This was something that was observable. 

Table III contains a tabular version of the confusion matrix that S2T-Net generated using the CIC-IDS2017 for 

the multi-class situation. In addition to this, the confusion matrix of S2T-Net as measured by CIC-IDS2018 can 

be seen in Table IV.  The proposed S2T-Net is still demonstrating excellent results, in spite of the large disparities 

in the total amount of samples for each of these categories. In addition to this, it is obvious that there is a pretty 

high level of misunderstanding between DoS data and DDoS data, which results in a remarkably low F1 measure.  

O. Comparative Analysis 

In this section, we evaluate the proposed S2T-Net against recent state-of-the-art methods (namely SS-Deep-ID 

[17], Deep-IFS [12], HS-TCN [13], LNN [11], LCVAE[24]), under binary classification, on the two datasets as 

detailed in Table V and Table VI, respectively. The results can be easily demonstrated that all methods are 

achieving robust performance in classifying normal traffic from abnormal ones. Table VII and Table VIIII 

Table 1: Binary confusion matrix of S2T-Net over a test set of CIC-IDS2017. 

  Estimated   

A
c
tu

a
l 

 Normal Abnormal Recall 
(%) 

F1-score 
(%) 

Normal 453126 1009 99.77 99.7 

Abnormal 1633 109807 98.53 98.81 

 Precision 

(%) 

99.64 99.08 - - 

 

Table 2: Binary confusion matrix of S2T-Net over a test set of CIC-
IDS2018. 

  Estimated   

A
c
tu

a
l 

 Normal Abnormal Recall 

(%) 

F1-score 

(%) 

Normal 2538929 614 99.97 99.97 

Abnormal  536 550059 99.90 99.89 

 Precision 

(%) 

99.97 99.88 - - 

 

Table 3: Multi-class confusion matrix of S2T-Net over a test set of CIC-IDS2017. 

 

 Estimated 

A
c
tu

a
l 

 Benign Bot DoS Infiltration PortScan Web Attack Brute Force Recall 
(%) 

F1-
score 

(%) 

Benign 453485 3 249 0 328 2 68 99.86 99.85 

Bot 2 227 51 1 67 8 29 58.96 71.38 

DoS 395 9 75407 3 153 19 118 99.08 99.24 

Infiltration 0 0 0 199 1 0 0 99.50 98.51 

PortScan 290 5 150 1 31250 25 35 98.41 98.33 

Web Attack 3 3 1 0 3 423 0 97.69 92.26 

Brute Force 10 4 10 0 3 7 2718 98.76 95.03 

 Precision 
(%) 

99.85 90.44 99.39 97.55 98.25 87.40 91.58 - - 

 

Table 4: Multi-class confusion matrix of S2T-Net over a test set of CIC-IDS2018. 

Estimated 

A
c
tu

a
l 

 Benign Bot DoS Infiltration DDoS Web Attack Brute Force Recall 

(%) 

F1-

score 

(%) 

Benign 2528086 1288 2727 903 2906 1761 1872 99.55 99.55 

Bot 2111 54262 137 198 333 158 39 94.80 95.54 

DoS 1964 198 115926 135 5002 145 138 93.86 93.82 

Infiltration 1812 89 108 30009 162 2 204 92.66 93.22 

DDoS 1807 229 4213 167 254477 93 102 97.47 97.04 

Web Attack 1834 157 307 254 278 35260 599 91.14 92.33 

Brute Force 1901 134 194 334 214 273 34636 91.91 92.02 

 Precision (%) 99.55 96.28 93.78 93.78 96.62 93.55 92.14 - - 
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tabulate comparable results of the multi-class scenario on both CIC-IDS2017  and CIC-IDS2018 respectively.  

The results demonstrate the ability of the proposed framework to model and discriminate between different 

attacks. Results from previous deep networks used as benchmarks were consistent with those from the 

corresponding studies. This means that the experiments prove that our implementation is correct and that the ML 

algorithms have been adequately trained. The P-values for the accuracy metrics on both datasets for semi-

supervised techniques following a Paired Student's t-test are displayed in Table IX to help us understand the 

statistical significance of the observed inconsistencies between the evaluation metrics. P-values were calculated 

with the help of SciPy Library [25], a free and open-source set of scientific tools written in Python. When the P-

value is less than 0.05, there is a statistically significant variation in the findings between the models; else, there 

is no difference. The fact that the P-values for the competing methods are less than 0.05 demonstrates that the 

suggested S2T-Net significantly surpasses the other competitive methodologies of accuracy. A further t-test, a 

paired t-test, was run to evaluate the significance of the F1-measure findings on the two datasets. P-values are 

calculated to show how the proposed model compares statistically to other approaches. 

 

 

P. Computational analysis 

In this part, we contrast the model's learning raining time and inference time because of the time-sensitive 

nature of cellular IoT applications and the limited resources seen in IoT contexts (for a batch of 1,000,000 

records). Due to the S2T-placement Nets in the edge node of cellular IoT, we test its test time on a Raspberry Pi 

4 as an edge node. Table XI depicts the timings of the various methods with respect to both data sets. On both 

datasets, ANN has the shortest training time among supervised methods. On the contrary, the competing methods 

all have extremely lengthy training times. Due to the high cost of computing incurred during the unsupervised 

pre-training phase, semi-supervised techniques require more time to finish the training task. The suggested S2T-

Net trained in significantly less time than the competition. It turns out that inference time exhibits the same sort 

of behavior. More so, running the same trials again on the edge node reveals significant improvements for all 

models, but the suggested S2T-Net consistently achieves the lowest calculation time on both datasets. This can 

be explained by a combination of variables, the first of which is that the stacked Transformer modules allow for 

a larger  

receptive field to be achieved with a 

relatively small number of layers, without 

sacrificing computing efficiency. 

Consequently, this leads to a reduction in 

the total number of parameters that can be 

trained, resulting in an architecture that is 

both simple and capable of rapid 

improvement. Training is made easier by 

the gradient flow, and computation is sped 

up thanks to BN layers and residual 

connection. Additionally, the training process can be sped up by dividing the unlabeled data into multiple 

Table 5: The comparative results on binary-class CIC-IDS2017 

Study Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LNN [11] 96.57 98.01 94.93 96.45 

SS-Deep-ID 

[17] 

97.46 97.51 95.92 96.71 

LCVAE[24] 96.80 99.10 98.48 98.79 

Deep-IFS [12] 98.32 98.29 95.07 96.65 

S2T-Net 99.53 99.16 99.37 99.26 

 
Table 7: The comparative results on multi-class CIC-IDS2017 

Study Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LNN [11] 96.95 90.51 90.84 90.67 

SS-Deep-ID 

[17] 

96.63 91.45 92.27 91.85 

LCVAE[24] 95.74 94.30 88.65 91.39 

Deep-IFS [12] 97.98 92.18 91.94 92.06 

S2T-Net 99.64 94.92 93.18 93.52 

 

Table 6: The comparative results on binary-class CIC-IDS2018 

Study Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LNN [11] 99.54 98.34 98.90 98.62 

SS-Deep-ID 

[17] 

96.90 95.33 98.36 96.82 

LCVAE[24] 98.66 98.39 99.86 99.12 

Deep-IFS [12] 96.39 96.82 95.90 96.36 

S2T-Net 99.96 99.94 99.93 99.94 

 
Table 8: The comparative results on multi-class CIC-IDS2018 

Study Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LNN [11] 94.49 91.29 90.16 90.72 

SS-Deep-ID 

[17] 

94.15 91.40 92.37 91.88 

LCVAE[24] 94.20 93.76 90.49 92.10 

Deep-IFS [12] 93.80 90.46 91.82 91.14 

S2T-Net 98.79 95.10 94.48 94.79 

 

Table 9: numerical results obtained from the significance test. 

 CIC-IDS2017 CIC-IDS2018 

Study Accuracy 

(%) 

F1-score 

(%) 

Accuracy 

(%) 

F1-score 

(%) 

LNN [11] 8.23E-02 3.82E-03 7.93E-03 6.34E-04 

SS-Deep-ID 

[17] 

3.76E-02 5.23E-05 6.07E-03 8.91E-03 

LCVAE[24] 8.69E-03 7.04E-03 8.05E-03 4.66E-07 

Deep-IFS 

[12] 

7.48E-03 1.10E-09 9.13E-03 8.49E-04 
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portions. After trying out a variety of training epoch counts, we found that the suggested model converges quickly 

when the training epoch count is 10, while other semi-supervised methods require up to 50 epochs. Following 

the preceding sections, it can be concluded that the suggested S2T-Net is fast and accurate enough to be used in 

an IoT setting. It might be readily taught on a cloud server that aggregates and prepares for training a huge 

volume of tagged and unlabeled IoT traffic records. If you want to boost real-time intrusion detections in various 

cellular IoT parties, you can confidently deploy the trained variant of S2T-Net on cloud or edge nodes. 

6. Conclusion and Future Directions 

 

In this work, we introduce S2T-Net, a deep-learning framework for anomaly detection in cellular IoT data logs. 

To increase the network's capacity to detect outliers in cellular traffic flows, S2T-Net incorporates a transformer 

module to compensate for the shortcomings of traditional convolutions. To further aid the suggested S2T-Net in 

its training, a sophisticated attention module is presented. In addition, the S2T-Net model is trained using both 

labeled and non-labeled IoT traffic data in a semi-supervised fashion. The operational efficiency and general 

efficiency of the suggested S2T-Net have been confirmed by extensive evaluation. With these enhancements, 

the S2T-Net is ready for deployment in a wide range of cellular IoT scenarios. 

 

This research paves the path for a number of developments down the road. First, an adaptable DL technique for 

identifying intrusions is needed because of the randomness of IoT time-series traffic. As a result, while offline 

methods may be employed for initial model installation, there need to be methods for the DL model to adapt 

over time to accommodate for both anticipated and unanticipated shifts in the dispersion of IoT traffic without 

requiring full retraining. Second, true detection of anomalies is crucial since providing instantaneous decisions 

is a need for the majority of IoT systems (like smart transportation or smart industry). If the time spent processing 

a series of IoT traffic is greater than the time between incoming traffics, the intrusion detectors risk causing a 

catastrophic failure in the operating platform. It is important to explain and confirm the judgments made by ML 

and DL techniques, which brings us to our third point: research into the interpretability of these conclusions. 

However, more research into the understandability of DL-based IDS is still warranted. Finally, given that no 

single approach is guaranteed to succeed in every situation, enhancing the performance of DL-based anomaly 

detection solutions by comparing them to multiple datasets will provide useful insights for enhanced decision-

making in a multi-domain setting, boost model recyclability, and simplify mobilization across a wide range of 

use cases. 
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