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Abstract 

Today's societies couldn't function without elaborate networks of communication. Many problems 

remain unresolved, but novel approaches to these problems are constantly being offered. Many of 

the problems plaguing existing works, such as high characteristic design cost, challenging feature 

selection, poor real-time performance, etc., stem from their focus on a wide range of characteristics. 

Worse still, the difficulty in training models due to data imbalance results in a poor detection rate for 

aberrant samples. To achieve a more effective and robust model, we present a multi-level feature 

fusion (MFFusion) model that utilizes a combination of data temporal, byte, and statistical 

characteristics to extract relevant information from different angles. Too far, MFFusion has 

outperformed the state-of-the-art on several real-world network datasets in terms of prediction 

performance and false alarm rate. We also use MFFusion for anomaly detection in an IoT network, 

using the most recent IoT malicious traffic information. The experimental results demonstrate the 

adaptability of MFFusion and its suitability for identifying network anomalies in an IoT context with 

system performance. 
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1. Introduction 

The Internet, 4G/5G cellular technology, and the rapidly expanding Internet of Things (IoT) are just 

a few examples of the ubiquity of communication networks in modern culture. The exponential 

development of communication systems has outpaced the wildest expectations of its creators. Nearly 

2 of the world's population, for instance, will have access to the Internet by 2023, according to the 

Cisco Annual Latest Report (2018-2023) White Paper.  Such massive networks would be very 

difficult to maintain and control, and the emergence of new kinds of networks just adds to the 

complexity of the situation[1]–[3]. For instance, manual setup often becomes impractical or wasteful 

in today's networks. While studies of communication networks have been conducted for quite some 

time, the field is still very much alive and kicking, with recent innovations including Software 

Defined (SDN) and Room Integrated Networks (SAGIN). Virtual network encapsulation in SDN is 

an example of a newer difficulty that might arise alongside more established ones like routing and 

traffic shaping, power control, and resource allocation[4]–[6]. 

Many new approaches, including deep learning, have been brought to the networking area to address 

these difficulties. In many applications, deep learning, as reflected by neural networks, has been 

shown to be very effective. This is notably true in the areas of image identification, language 

processing, and series data issues. Many types of communication networks employ deep learning 

models for a variety of purposes, including but not limited to network architecture, traffic prediction, 
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allocating resources, etc. Most deep neural systems are created for data with a Euclidean structure, 

such as photos and videos, therefore they aren't completely using the network topological structure 

in this research. Recent years have seen the proposal of graph-based deep learning, in the form of 

Graph Neural Networks (GNNs), for non-Euclidean structural data in an effort to address this 

problem[7]–[9]. More recently, GNNs have been integrated with deep learning for decision-making 

across a range of domains; for instance, GNNs are used to analyze graph information and enhance 

distributed computing's inter-coflow scheduling capability. The most frequent issues, such as 

network modeling, routing, and traffic prediction, are presented in two or three different examples as 

shown in figure 1. 

 

 

Figure 1: The common network communication problems. 

 

 

1.1 Communication Network Traffic Detection 

To ensure the safety of the internet, it is crucial to be able to identify malicious traffic and unusual 

patterns of network activity. From the viewpoint of the traffic carrier, anomalous network behavior 

is identical to that of any other network application, each of which is made up of a linear 

arrangement of network data packets forming a unique network flow[10]–[12]. 

 

Current network abnormality detection techniques face significant hurdles due to the ongoing 

development of network design and the exponential increase of network hardware. Many industries 

have adopted Internet of Things (IoT) solutions in recent years, and experts predict that IoT will be a 

game-changer in the next industrial revolution. On the other hand, a huge number of deployed IoT 

devices can only be protected to a limited degree. Most of these gadgets do not have any kind of 

built-in security system, so when they are connected to the Internet, they create thousands of 

potential entry points for hackers to exploit. As a result, concerns about network security have 

emerged as a major roadblock to the progress of future network infrastructure. However, the present 

logically centralized detection and prevention methodology and intrusion warning system for 

wireless sensor networks cannot satisfy the needs for stability, dissemination, resource limits, and 

low latency in the Internet of Things[13]–[16]. As the number of connected devices continues to 

rise, the amount of information that has to be stored, processed, and computed also increases, posing 

significant problems for centralized network aberration sensing devices. According to the study, by 

2025 there will be 75.48 billion networked gadgets in use all over the world. By 2023, the number of 

gadgets linked to Internet protocol will exceed three times the number of people on the planet. It is 

expected that ultimately cloud data centers will not be able to purchase such a massive quantity of 

processing[17]–[19]. Edge computing and the Internet of Things in the network's periphery are two 

examples of the based on distributed cognitive computing network topologies offered by researchers 

as a solution to this issue. By using these tools, computation nodes may provide distributed, low-

latency, and highly-available services to adjacent data sources. By moving computation to edge 

nodes, we can overcome IoT's resource limitations and meet its demands for computation, storage, 

and control. Because, like other services, centralized network anomaly-based architecture has a hard 
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time adjusting to a decentralized setting, the best solution is to install "edge nodes," where harmful 

and abnormality detection is offloaded to safeguard devices directly linked to the network. 

1.3 Quantum networks 

Secure communication across nodes of varying quantum and conventional capabilities, as well as 

efficient distributed quantum computation, are made possible by quantum networks. To effectively 

transfer quantum information among communications nodes, a quantum wireless transmission 

network must be both a complicated system and able to provide a safe wireless network connection. 

Cheng et al. introduced the first quantum routing technique in a hierarchy routing protocol to 

transfer a quantum state from one node to another, even if the nodes did not share Bell pairings[20]–

[22]. Yu et al. presented a routing system for a dispersed wifi router and a wireless ad hoc quantum 

telecommunication system. A quantum multi-hop telecommunication system based on entanglement 

switching and simultaneous measurement was recently reported by Wang et al. Quantum bridging 

using partly entangled states was suggested for use in hop-by-hop teleportation to cut down on the 

time investment[23]–[25]. Based on hybrid Werner states, Shi et al. suggested a quantum multi-hop 

network communication for arbitrary single qubits. A quantum protocol for multi-hop 

communication using partly entangled GHZ states was developed by Xiong et al. In order to 

facilitate quantum multi-hop communication, Zhan et al. suggested using W states and EPR couples. 

Two-qubit quantum multi-hop routing protocol using the compound GHZ-Bell channel was 

introduced by Zou et al. To facilitate one-qubit, two-qubit, and N-qubit atomic multi-hop 

telecommunication, Zhang et al. suggested a state that is a hybrid of an asymmetric W state and a 

Bell state. Researchers Yang et al. looked at using cluster states for mobile network communication 

and came up with a few different techniques for doing so using 1D, 2D, and 3D cluster states. In 

addition, mesh topology-based multi-hop classical translocation techniques have been 

developed[26], [27]. 

 

Despite the fact that the aforementioned schemes can be used to accomplish quantum multi-hop 

information exchange of a single or numerous quantum states by using different entangled states, 

they suffer from a major drawback: each pair of destination nodes on the path must share multi-qubit 

entangled states, such as a Bell country, Werner condition, partially intertwined GHZ state, W-Bell 

state, Quantum storage, preparations, and measurements should be minimized in their need for 

mobility in quantum nodes. 

 

2. The Proposed Methodology  

 

In this part, you will learn about the preprocessing techniques, model structure, and MFFusion's 

parameter settings that make it unique. 

 

In the experiment section, three actual network datasets from ISCXIDS2012 are used. Labels, 

timeout, log data, as well as other statistical aspects of each packet are included in this dataset 

together with the original data collection files and explanation files (or flow). There is a substantial 

quantity of regular traffic interspersed with the anomalous samples, therefore the data preprocessing 

must simultaneously parse the PCAP file and the descriptive file before the label-matching operation 

can be performed. Figure 2 depicts the entire process flow. 

 

 

 
Figure 2: The data pre-processing. 
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Each dataset has a unique recording format for its accompanying explanation files. 

 

For label matching to work, it must first read the description file, at which point it may use the date 

and quintuple data to find the relevant flow and label it appropriately. 

 

After the segmentation process, each flow is treated as a separate example, which is a file that 

contains. Before feeding data into a model, it's crucial to settle on an appropriate vectorization 

approach. The model may be taught new abilities by using various vectorization strategies. 

 

 
Figure 3:  Multi-level fusion. 

 

 

The vectorization section employs three distinct vectorization techniques to collect characteristics of 

varying granularity, allowing for the incorporation of viewpoint-specific data into the model. These 

vectors are taken straight from the raw data of the traffic, but in order to gain more useful abstract 

features, it is important to use deep learning techniques to craft unique model architectures for the 

purpose of automated feature extraction. Our research presents a multi-level features fusion model, 

the architecture of which is shown in Figure 3. 

 

 

The comprehensiveness of findings is typically improved by analyzing data from many angles. In 

all, there are four sub-models that make up the MFFusion framework. Timing, byte, and statistical 

features are each taken into consideration by the first 3 network architectures. The characteristics 

acquired in the first three steps are fused into the fully-connected neural network in the fourth step, 

where they are used for joint learning. Table 1 shows the specific values used for the MFFusion 

model. 

 

Table 1: Parameters of multi-level fusion 

Network Layer 

Network 

LSTM 1 

Dropout 

LSTM 2 

Dropout 

Linear 

Relu 
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3. Results and discussion 

Accuracy, recall, precision, and F1 are typical measures of performance in categorization tasks. 

However, in the realm of network malicious detection, the terms detection accuracy (DR) and rates 

of false alarms (FAR) are often employed. A reduced false alarm rate may minimize the cost of 

misjudgment, while a greater detection rate can avoid the omission of risky activities. Real-world 

applications of anomaly-based strive for a high detection rate of unusual samples with a low false 

alarm rate since aberrant attacks might have dire repercussions. 

 

To learn all three properties simultaneously, the MFFusion model employs a trifecta of vectorization 

techniques and associated network topologies. The idea behind it is that broadening one's grasp of a 

topic may sometimes provide better results. This section discusses how to rate each feature's 

usefulness to the overall model. 

 

The saliency map is used to get the model's gradient to the input in deep learning, a technique often 

used in computer vision to ascertain how each pixel in the input picture contributes to the model 

overall. Similarly, this section gets the total exact value of the gradients of each characteristic input 

to evaluate the importance of each grade feature in the system. 

 

Figure 4 provides an alternative vantage point from which to examine the contributions of the three 

networks. The goal is to see how the empirical measures change when neural units are removed 

from one of the multiple network outputs (i.e., inputs to Transmit the signal) in a trained model. 

 

 

 
Figure 4: Degree of performance level. 

 

 

Figure 4 shows that eliminating the leverages of any one of the three Fusion networks would 

decrease DR and raise FAR, with the greatest effect shown in the Binary, Series Data network. It's 

consistent with what we found using saliency maps. Surprisingly, when the Statistical component is 

off, the ACC really improves. While its FAR increases from 0.43% to 1.80%, its DR decreases from 

98.75%, making it less than ideal for detecting anomalies in a network. The impact of 

multicollinearity on DR and FAR is exacerbated since the ACC increase is the result of more 

problematic samples being misdiagnosed as normal. Because the system is more likely to glean data 

from the well-planned features extracted if there are insufficient examples for extracting information 

from deep learning features, removing the Statistics modules has a stronger influence on those 

aberrant kinds with fewer data. 
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Figure 5: Overall Performance. 

 

Figures 5, 6, and 7 provide comprehensive data from the experiments. A small drop in performance 

on ISCXIDS2012 did not prevent MFFusion from achieving a DR of 98.75% and a FAR of 0.43 

percent. 

 

 

 
Figure 6: The second Performance 

 

 
Figure 7: The third performance. 

 

Anomaly detection in IoT networks was performed using MFFusion. Although the behavioral 

features and traffic distribution are shifting in the IoT scenario, overall performance met the 

processing capabilities, and certain categories even surpassed 100%. 

 

This demonstrates MFFusion's adaptability and demonstrates that it can be used to identify 

anomalies in network traffic in an Internet of Things set. 
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The contemporary edge IoT ecosystem is characterized by a plethora of IoT devices being linked to 

the Internet via edge gates, which provides a wealth of benefits to society as a whole. But malicious 

actors may also launch attacks on IoT devices when they are connected to the Internet. In addition, a 

significant number of networking devices would create hundreds of millions of messages per day, 

rendering the intrusion detection systems housed in the cloud services center inadequate to the 

requirements of the distributed manner. The MFFusion framework is suitable for deployment at the 

edge nodes. It will safeguard IoT devices that are hardwired into edge nodes by detecting aberrant 

network activity via data gathering and analysis. It diverts network attack monitoring from a central 

location to distributed nodes at the network's periphery. This means that jobs that need lots of 

resources like computation, storage, and administration may be moved to the network's periphery. 

 

A detection system in IoT networks is a good fit for MFFusion. The effectiveness of MFFusion may 

also reach the processing capabilities in an IoT context, as shown by tests and investigations done on 

actual IoT harmful network datasets. 

 

6. Conclusion  

 

To achieve the rapid recognition of aberrant network traffic, this research provides a malicious 

traffic approach to detect based on MFFusion. The detection rate, the false alarm rate, and the 

resilience of MFFusion are all improved by the combination of three tiers of features: time, bytes, 

and short-term statistical characteristics. Having trouble collecting and correctly categorizing 

anomalous network samples is a common result of working in a network, which might cause a 

severe shortage of such samples. Finally, MFFusion may be implemented at edge nodes to offer 

network security assistance for things attached directly to the node, making it ideal for detecting 

malicious traffic in an IoT setting. 

Future research is the integration of GNNs with other forms of AI. Combinations of GNN and GRU 

for modeling, as well as GNN and DRL for allocating resources, routing, and VNE, may be shown 

in this overview. While GNNs do have certain benefits, such as the capacity to understand 

topological relationships and the ability to generalize for unknown network typologies, they are not 

a silver bullet. For scenarios in which there is a dearth of training examples or where it would be 

prohibitively costly to obtain actual data, GANs provide a potential answer. While GANs have seen 

extensive application in other domains, such as image and video analysis, our review does not find 

any examples of their deployment in communications infrastructure using a mix of GANs and 

GNNs. The Automatic Deep - learning (AutoML) method is another case in point; it may be used to 

automatically optimize the GNN's settings. 
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