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Abstract 

Explainable artificial intelligence received great research attention in the past few years during the widespread of 

Black-Box techniques in sensitive fields such as medical care, self-driving cars, etc. Artificial intelligence needs 

explainable methods to discover model biases. Explainable artificial intelligence will lead to obtaining fairness and 

Transparency in the model. Making artificial intelligence models explainable and interpretable is challenging 

when implementing black-box models. Because of the inherent limitations of collecting data in its raw form, data 

fusion has become a popular method for dealing with such data and acquiring more trustworthy, helpful, and 

precise insights. Compared to other, more traditional-based data fusion methods, machine learning's capacity to 

automatically learn from experience with nonexplicit programming significantly improves fusion's computational 

and predictive power. This paper comprehensively studies the most explainable artificial intelligent methods based 

on anomaly detection. We proposed the required criteria of the transparency model to measure the data fusion 

analytics techniques. Also, define the different used evaluation metrics in explainable artificial intelligence. We 

provide some applications for explainable artificial intelligence. We provide a case study of anomaly detection 

with the fusion of machine learning. Finally, we discuss the key challenges and future directions in explainable 

artificial intelligence. 

 

Keywords: artificial intelligence; Black-Box; machine learning; explainable artificial intelligence; Information 

fusion; intelligent methods; data fusion; anomaly detection;  

 

 

1. Introduction 

ML today appears in everyday technology use, which increases the contributions and studies in the research 

community toward Deep learning (DL) models and its significant performance and high results achievement in 

various fields such as medical diagnosis, economics, Network/IoT, and adversarial attacks. Most AI model is built 

as Black-box, White-Box, or grey-Box models. Where the Black-box model is the higher accuracy prediction, but 

these predictions cannot be interpretable based on non-linear functions. In contrast to White-box models that can 

be easy to interpret and simple in computation. In the grey-Box model, some partial knowledge can be known [1].  

DL model is known as Black-Box, where predictions cannot be explained or interpreted. These increase the 

consideration of the model transparency and its ability to achieve unfairness. An example of the ML unfairness 

model is the COMPASS system that uses in most US justice community which determine more people who 

deserve parole. This system is based on giving a score to jailed people to determine if they are allowed parole or 
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not. Any error in the COMPASS score leads to extra years in jail. Many cases are denied parole for no clear reason 

until exploring the system found that it is biased toward race and age [2]. 

Another accident of ML model, during California, fires 2018 google daily air quality index that determines if it is 

safe to go outside or not indicates that it is fine to air quality and it is safe to go outside. Another biased ML model 

found that some hospital ML system recommendations for people who deserve extra medical help depend on race 

[3]. 

Utilizing Black-Box systems in multiple applications with the ambiguity on how it works and the inability to trace 

results and reasons for prediction will lead to hampering the trust of the user toward these systems. Obfuscated 

biases systems will harm some people and some groups, which will achieve unfairness and untrustiness in model 

transparency [4]. 

During appearing of these problems of the ML system of unfairness and algorithm biases results. The research 

community released that accuracy is not more important than making an ML system capable of explaining and 

interpreting its results. So many studies apply explainable methods to explain the results of their models in 

different fields. Explainable artificial intelligence (XAI) attracts many researchers to explain biases in many 

systems and models and in some ML methods. Also, building inherently interpretable models will lead to the use 

of an explainable white-box model instead of building a black-box model. Many fields integrated with XAI in the 

last years. So we conclude and review these studies in different domains and fields [5, 6]. 

Our study aims to investigate into aims to provide the main criteria that define the transparency model and the 

motivations behind building a transparency model. Also, we provide the most recent XAI methods with different 

categories and taxonomies supported with mathematical proof and drawbacks in each method. In an application 

such as anomaly detection, network/IoT, and adversarial attack, we introduce the most recent work in XAI in these 

applications. 

The initial raw data are often unsure, imprecise, inconsistent, contradicting, and similar; data fusion is a method 

that fuses data to generate more consistent, useful, and correct information. Data fusion techniques come in a wide 

variety, each tailored to a certain set of use cases. Among the many applications of data, fusion is sensor networks, 

computer graphics, radars, target tracking, target rapid detection, penetration testing, scenario evaluation, and so 

on. 

Bayesian fusion (e.g., Bayes fusion), evidentiary belief argumentation fusion (e.g., Vapnik theory), trying to 

arrange fusion, etc., are all classic approaches to data fusion. A new window of opportunity for progress in data 

fusion has opened up in recent years thanks to advancements in sensors, specialized tools, and numerous other data 

processing techniques. With its powerful computing and classification capabilities, machine learning is widely 

believed to be the key to dramatically enhancing the efficiency of data fusion methods. 

As a crucial aspect of network security, anomalous traffic detection has risen to the forefront of academic and 

professional interest. In this context, "anomalous behavior detection" refers to the process of monitoring a system 

for any out-of-the-ordinary. Conventional detection strategies keep tabs on network activity in real time by 

combining data gathering, processing, and visualization. Existing systems for intrusion detection (IDSs) and IPSs 

are good complements to traffic monitoring, yet, there are issues of excessive false alarm rates or leak rates that 

prohibit them from being perfect. 

The following paper structure is divided as follows. Section 2 provides the criteria that distinguish the 

transparency model and why Transparency is needed in the ML model. In section 3, we review different 

classifications of XAI with the most used method in XAI. In section 4, we provide the recent and few studies in 

anomaly detection, Network/IoT, and adversarial attacks. In Section 5, most challenges and future directions have 

been discussed. Section 6 provides the conclusions of this paper. 
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2. Transparency in AI 

Most ML systems are becoming Black-Box applications today, such as anomaly detection, elections, criminal 

justice, banking, medical decision-making, etc. Transparency of these secret models is essential as it found that 

these models are unfair in some situations, which may lead to trust issues in machine models to issues in justice 

fairness. In this section, we provide the important criteria that must exist in any transparent model and the reasons 

for using Transparency. 

2.1 Transparency criteria 

In this section, we aim to produce the important criteria of a transparent model: 

 

Original/transformed data: The important point that differentiates whether the model is transparent or not is if the 

data is original or transformed. The transformed data is the process of converting the values, structure, or format of 

the original data. Usually, transformed data enhance the quality of data and protect it from null values, incomplete 

data, etc. also, and transformed sensitive data protect data during the adversarial attack that targets DL models. 

Model-sensitive value transformation guarantees the Transparency of the model, which raises the trustworthiness 

of the DL models. 

Human-in-the-loop (HITL)/human-out-of-the-loop: HITL is known as a model that needs human interaction in 

both the training and testing phases. In this type of model, human cancel the ML decisions when it is wrong, which 

raise the learning of model confidence and accuracy of the decisions. In contrast, the HOTL is a fully automated 

AI system that is inherently controlled without the need for humans. HITL, in some cases, can allow for expert 

data manipulation or access only needed data which will lead to unfairness and untrustworthy. So, human 

judgment models do not achieve Transparency, unlike the HOTL model. 

 Knows about the model: Any known data about the model such as architecture, parameters, and inputs/outputs can 

cause a white-box adversarial attack. So, it is important for the model not to be known for all to achieve 

Transparency. 

Model Security and privacy considerations: protecting data and model security associated with decision-making 

will enable Transparency to build trust. Adversarial attacks can easily control the DL model, which may control 

the decision of the model in sensitive cases such as in self-driving cars, which leads to insecure and untrust clients 

who use this service. So, to obtain model transparency must guarantee the security and privacy of sensitive data. 

2.2 Reason of Transparency 

Find "Clever Hans" decision based  

The Clever Hans effect is referred to by scientists to be the risk of an unintentional hint of the required behavior by 

the questioner if experiments are not carefully designed. One ML example of this type of model, Lapuschkin et al. 

[7], found that PASCAL VOC solving methods use data correlations to achieve true classification. Also, the author 

shows the final fine-tuning stage in the DL model containing padding artifacts that have to influence the classifier 

output. 

Boost confidence and Verifiability 

Trust in AI applications is considered to be a significant increase in AI utilization in many critical areas of decision 

making such as medical diagnosis or criminal justice and self-driving cars. So, XAI helps to build trust between 

human-to-human interactions and between human-to-machine interactions, which can build confidence in future 

ML applications [4]. 

Transparency is essential for new ideas. 
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Earlier, linear models were interpretable, and the extracted feature was understandable. The Recent DL methods 

are obtaining high accuracies without knowing the feature that the model is used. The necessity for strong 

interpretation is essentially more than predication itself which will lead to strong control. The non-linear models 

are needed without loss of interoperability [4].   

To achieve LegislationLegislation 

General Data Protection Regulation (GDPR) in Europe has discussed the justice aspects in the ML context. Also, 

emphasize the value of human-understandable for ML decisions. For example, if anyone has a loan refused by a 

bank using an AI system, has the right to know the reasons for the rejection. Although this considers a new 

challenge to LegislationLegislation, Transparency in the ML model will lead to achieving fairness of justices [4]. 

 

3. Explainable artificial intelligent methods (XAI) 

 

Traditional methods or DL methods:  

The traditional model can easily explain the model prediction. Also, it can deal with a small amount of data using 

standard hardware. Examples are SVM, Decision tree, and KNN. DL methods: difficult to interpret the predictions 

and deal with a large amount of data using GPU. For Example, CNN, RNN, and AE [8]. 

Discriminative methods or generative methods: 

Discriminative methods can model a decision boundary between the classes, where it aims to estimate       , 

such as SVM and CNN. On the other hand, the generative methods learn the actual distribution of each class which 

aims to estimate        to deduce        [8], such as naïve baye, DBN. 

Global explanation or Local explanation: 

The global aims to interpret the whole model individually from any input but cannot interpret a single instance. So 

local explanation aims to interpret only one prediction, which can deal with linear functions.  

Post-hoc Vs. intrinsic: 

The explanation may be during the prediction process, which is named "intrinsic," or needs post-processing 

generation to explain predictions that are named "post-Hoc ."The intrinsic methods aim to create white-box 

explainable models, and post-hoc methods aim to explain black-box models [5],[6].   

Specific explanation or agnostic explanation: 

Specific deals only with a certain type of algorithm. In contrast, model agnostic can be employed in any type of 

algorithm. Model-specific is can only explain models such as logistic regression, decision tree, and linear 

regression. But model agnostic has the flexibility to generate methods that can explain any type of model [5].  

Data drove vs. Knowledge domain: 

Data-driven domain refers to interpretations that compare the new data with only data inputs. On the other hand, 

the knowledge can be used to improve explanations and define why some features are more important than others.  

Data type: 

Explanation methods can be explained on many data types such as text, image, tabular data, graph, and video [5]. 

The aim of explanation can be to explain white-box models or intrinsic (specific) models, create inherently 

interpretable model (post-hoc) models, improve model fairness, or test prediction sensitivity [6].   
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Other explainable methods: 

Instance-based aims to explain the actions of ML using a certain example in the dataset. These types of methods 

help for a better understanding of ML models using decision boundaries and properties of training data. This type 

of explainable method is divided into prototypes where the user is supplied with a sequence of examples that 

describe a class of the Black-box. And Counterfactuals are where the user is supplied with a sequence of examples 

same as the input query but with distinct class prediction. 

 Also, Neural network (NN) interpretations consternation on NN and DL explanation methods. These methods can 

divide to feature visualization, such as saliency maps which shows each image's quality. And distillation methods 

that aim to explain NN with a simpler model [9]. 

The global Surrogate model approximates the prediction in ML. It is also named model extraction. Such an 

example of the global surrogate is TREPAN [17] method which obtains a tree by querying NN and maximizing 

the gain ratio to estimate the network output. Also, an example of rule extraction is DeepRed [16], where the 

author explains the DL model based on decision tree inference.  

Local interpretable model-agnostic explanations (LIME) [10] is the first local surrogate model based on a local 

approximation that mimics the local actions in the complex model by training part of the dataset related to a given 

example. The partial dataset is built by combining perturbation around the example. Using this dataset, the black-

box model can approximate the alternative model as follows: 

           
   

               (1) 

Where   is the original model,    is the loss function which minimizes by model  . For instance, a.      is applied 

as regularization for complexity reduction. The perturbation is weighted by   , which is defined as distance. The 

drawback of this method is finding the correct neighbor, which becomes a problem with tabular data. Also, 

depending on Gaussian distribution to define the example disregarding the correlation between features can cause 

improbable data points that can be used in local explanations. The anchor [11] method is introduced to solve issues 

that exist in the LIME method, which accurately defines local explanation areas using many rules instead of linear 

models. Based on LIME, Deep Argumentative eXplanations (DAX) [22] aims to explain CNN and FFNN on 

image and text data types. Zafar and Khan [23] provide a deterministic method of LIME to solve uncertainty 

problems by collecting data in hierarchal clusters and using KNN as a clustering method.  

 

Another local data-driven method is Shapley Additive Explanations (SHAP) [12], based on optimal Shapley 

values. SHAP has two types of kernels. The first is KernalSHAP which assesses the Shapley values. And the other 

kernel is KernalTree which assesses tree-based models and consider them as global explanation based on a 

combination of Shapely values. The SHAP method obtains Shapley values based on game theory. The SHAP can 

be explained as follows: 

 

   ̀     ∑   ̀ 

 

   

 

(2) 

 

Where E is the explanation model,   is the SHAP values,  ̀ nd ai is the feature vector of instance  ̀ .KernalSHAP 

is based on LIME to reduce the complexity of the sample and assess the SHAP values. Also, SHAP was applied 

more rapidly on Tree-based models. One disadvantage of this method is the slowness of KernalSHAP and neglect 

of the dependency on features which solves with TreeSHAP by introducing non-intuitive feature importance.   

Partial Dependence Plot (PDP) [12] is an activation maximization method that defines the importance of features 

in the ML model. PDP indicates the marginal effect specific features have on the prediction. This method can 

visualize the non-linearity in the ML model. One drawback of this method is that part of the dependence feature is 
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not correlated with other features. Another Plot method is Individual Conditional Expectation (ICE) [13], which 

visualizes the prediction per one instance and shows the relation between prediction and instance changes. On the 

other hand, if the feature is strongly correlated, it is difficult to trust the initial dependency plot. So, the 

Accumulated Local Effects (ALE) [14] Plot can visualize as an average of the influence of features on the model 

prediction. ALE method is more complicated and less intuitive compared to other plots ICE and PDP. 

Another perspective of model agnostic methods is permutation feature importance (PFI) [15] which computes the 

feature value and then measures the prediction error raising, which interrupts the correlation between the feature 

and the true outcome. Breiman [15] measures PFI based on random Forrest. Another study provides a model-

agnostic version [40] where PFI is defined as: 

 

          ̂  ̃              ̂  ̃      (3) 

 

Where T is a subset that contains PFI features,  ̃   is permuted reproduction of   ,    is the feature matrix 

without T, and    ̂    is the performance measure of  ̂. 

Another feature importance method, DALEX [18], is based on the method [41], which consists of decomposition 

for prediction. Each one is a local gradient for knowing the attribute importance for local XAI. And for Global 

XAI, many techniques are integrated into this method, such as calculating the performance, contribution of 

variables, residual diagnoses, and partial dependence plot. Another FI approach, the Neural additive model 

(NAM)[19], aims to integrate high-performance models Such as the DL model. This method can deal with the 

graph data and with additive DL models. Also, Contextual Importance and Utility (CIU) [20] depend on testing the 

ContextContext and determining the contribution of each feature in every ContextContext. This method utilizes 

two evaluation methods, Contextual Importance (CI), which approximates the overall significance of a feature in 

the present ContextContext, and Contextual Utility (CU) which gives an approximation for the satisfactory degree 

of present feature value from provided output class. Tree Space Prototype (TSP) [21] aims to obtain many tree 

prototypes in each class in the tree space to achieve a tree ensemble b explainable. 

In instance-based, counterfactual methods aim to modify an example with the amount that can change its 

prediction. The first counterfactuals method is proposed by Wachter et al. [42], which minimizes the loss function 

using the following formula: 

 

     ̀  ̀        ̂  ̀   ̀        ̀  (4) 

 

Where the quadratic distance between prediction and counterfactual   ̀ and desired output  ̀, and   is the distance 

between example    and counterfactual  ̀. Then obtain the Manhattan distance to be weighted by the inverse 

median absolute deviation (MAD) 

 

      ̀  ∑
|      ̀ |

    
   

 
(5) 

 

 

where the feature set is F, and obtain MAD using the following formula: 

 

               |                    |  (6) 
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Where p is the dataset, diverse Counterfactual Explanations (DICE) [24] methods aim to guarantee the feasibility 

of important ContextContext in CF and diversity among introduced CF. A further post-Hoc example aims to 

obtain CF using the shortest path distance of density weights metrics [26].CFX [25] produces CF for Bayesian 

classifiers, which indicates the reasons for the effects between variables. 

Another instance-based method is Prototypes and Criticisms, where the prototype is the instance that represent all 

data and criticisms are the data that will not represent in the prototype. Most prototypes and criticism aim to select 

the optimum prototypes. As MMD-critic method [27] uses both prototypes and criticisms.  

The NN interpretation considers the interpretation in NN and DL models. Such as Pixel Attribution (Saliency 

Maps) methods which provide each pixel contribution. One of these methods is Vanilla Gradient (Saliency Maps) 

[28] which is considered the main pixel attribution method. In this method, a gradient is obtained, and the higher 

gradient can cause modifications in predictions. Also, the deconvolution method [29] rebuild detected activation 

by unspooling, Relu, and Deconv in every CNN layer. One drawback of these methods is that they may mislead 

the explanation because of the gradient. So, layer-wise Relevance Propagation (LRP) [30] which based on Taylor 

decomposition for DL model interpretations. 

Most previous methods are considered data-driven methods in the knowledge methods perspective, where 

exterior knowledge is applied to enhance the explainable model. One of the most common methods is Tcav 

[31] which provides the concept of activation vector (CAV) that explain the NN. Also, calculating the CA to 

obtain reasons. Another method also explains NN but in the NLP domain, which splits the input into parts to 

obtain reasons. Tcav depends on human existence to provide knowledge to model. Other knowledge-based 

methods example, Grad-CAM++ [32], aim to produce a holistic heatmap for input images. Another method [33] 

recommends songs for the user by integrating the history knowledge graph into the model. Then LSTM applies to 

give a score about the path that describes the user item and knowledge. Then combine all scores with exploring the 

user interests. Ma et al. [34] provide a knowledge method that combines recommendation and rule modules to 

explain the joint learning framework. 

In inherently interpretable methods, Super-sparse Linear Integer Models (SLIM) [36] derived predictions 

depending on base math calculations. Another self-explainable method, the RB method [35], depends on the next 

hierarchical Bayesian probability optimization. Another method indicates the reasoning of the human expert in a 

certain field to create field interpretation [37]. DeepMiner [38] used interpretable CNN to drive the explanation of 

mmomogram classification. Also, in cancer detection, A recent XAI method interprets the NN model depending 

on mammography image [39]. 

3.1 Evaluation metric 

In this section, we produce the metric that determines the effectiveness of the XAI model, which is considered to 

be guidance in XAI implementation. 

 

Faithful and fidelity are considered accurate explanations for the model. Some studies use feature importance to 

calculate the probability of removed data. The important feature will indicate a high value [43, 44]. Also Tcav 

model has measured with faithful which indicates less value during noise images. Also, high fidelity on the 

surrogate model indicates that the model simulates the behavior in the black-box model, such as in [10], which 

provides a local surrogate model on an interpretable model and then measures recall of important features.  

 

Robustness: refer to the ability of the model to protect its interpretation from small perturbation and adversarial 

attacks. Robustness is used to evaluate LIME and SHAP methods [44]. Also, some studies obtain robustness by 

measuring the difference in saliency map between original and perturbation inputs [45]. Also, some studies aim to 

reduce the bias model in the following three stages: 
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Pre-processing: methods in this stage obtain before training the model to remove bias. Such a method in [46] 

changes feature weights to eliminate bias in sensitive attributes. 

In-processing: methods in this stage obtain during the model training process. Most studies aim to improve 

fairness constraints along with cost functions. Such as Adversarial Debiasing [47] which aims to improve the 

predictability of joint target variables while reducing the predictability of sensitive features using a GAN. 

Post-processing: methods in this stage are applied after training. Unlike other stages, methods cannot perform any 

changes in input data or in the model, such as Equalized Odds [48], Which adopt the model thresholds to minimize 

the variations between the true positive rate and the false positive rate for each sensitive subgroup. 

 

 

4. Application 

4.1 XAI in Anomaly detection 

 Anomaly in ML means a data point in the space that does not follow the neighbor in the sample space, also named 

"outlier."So, anomaly detection (AD) is the process of a suspicious pattern that does not follow the norm. The AD 

is usually employed over unlabeled data. In practice, it is not important to detect outliers precisely, but it's essential 

to understand the reason for predictions. Anomalies explanations (AX) allow us to understand the reason for 

specific predictions from the AD model and also provide more safety to the model environment. Table 1 shows the 

summarized XAI methods in AD.  

 

Table 1: Summarize XAI methods in AD. 

Method Type of method Type 

Based-on LRP NN interpretation Image 

NEON NN interpretations Image 

SFEs Neuralization and sequential feature Data points 

X-PACS Discriminative feature Image 

COIN Discriminative feature Image 

FCDD Perform FCNN architectures Image 

STAN Space and time exploration Audio-video 

RP-tree Discriminative feature Text 

Based on SHAP Error reconstruction Text 

Based on SHAP and Local-DIFFI Error reconstruction Text 

  

The 'neutralization means converting into a function like NN. In this ContextContext, Kauffmann et al. [49] study 

the influence of "Clever Hans" on AD. So, the author trained three models kernel density estimator KDE, 

Autoencoder (AE), and one class model on two datasets MINIST-C and MVTec ground truth and pixel-wise 

explanation. The results show that each model has its issues that lead to "Clever Hans" issues, so the author 

implements bagging techniques that combine the results of each individual model, which proves that it can reduce 

the "Clever Hans" AD. Another example of neuralization introduces Neuralization-Propagation (NEON), which 

was introduced to perform an explanation for the outlier. And apply LRP technique is built to predict the backward 

NN. In another example, the author introduces sequential feature explanations (SFEs) to explain the reason for 

considering anomalies points by indicating the importance of each point. 
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In ContextContext of discriminative feature, Macha et al. introduce X-PACS for outlier explanations using 

clustering subspaces. Also, COIN  explains outliers using classifiers knowledge that differentiates between normal 

and outlier points. Another study based on RP-tree explains the outliers by splitting tree regions. 

Depending on Heatmap, Liznerski et al. explain one class to identify various types of energy consumption 

anomalies. And obtain Transparency by using an interpretation heatmap to detect the crucial area. 

A study of the combination of data types in explanation, space-attention network (STAN) detecting Audio-video 

recognition, which introduces both space and time exploration.  

 Depending on Shapley value computing, Takeishi introduces a method to reconstruct error in Principle 

component analysis (PCA) which helps to explain the AD prediction based on PCA. Also, Brito et al. show similar 

behavior between SHAP and Local Depth-based Feature Importance for the Isolation Forest (Local-DIFFI).  

 

 

 

4.2 XAI in Network/IoT 

Cybersecurity attacks become a risk to the stability of communications and Network/IoT integrity. So, it is 

essential to understand the causes of any ML predictions that strengthen ML models. In this section, we provide an 

investigation on the most contribution in Network/IoT, which utilizes XAI methods. This investigation is 

summarized in Table 2. 

 

Table 2: Summarize XAI methods in Network/IoT. 

XAI Method Type of 

attack 

Dataset 

LIME, SHAP, Boolean Decision Rules via 

Column Generation (BRCG), and Contrastive 

Explanation Method (CEM) 

IDs NSL-KDD 

SHAP IDs NSL-KDD 

SHAP IDs  CSE-CIC-IDS2018, BoT-IoT, and ToN-IoT 

LIME Botnet Selected dataset 

Subspaces the features Botnet MAWI and ISP 

Random Forrest Botnet UTC university dataset 

Random Forrest, logistic regression, and NN Malware N/A 

 

DFF  depends on multiple XAI techniques to obtain measurable reasons that affect the attack prediction and its 

degree. Another method in IDs aims to differentiate between binary classifiers and multi classifiers depending on 

SHAP. Further contribution in IDs by Sarhan et al. aims to obtain the feature contribution depending on SHAP. 

In Botnet detection, Guerra-Manzanares et al. analyze the impact of the selected feature on the accuracy and 

quality of the interpretation of data from the problem domain of nine IoT devices. Also, Araki et al. introduce 

subspaces of features to explain partial properties of objective hosts, combining with the cluster method to produce 

feature importance. Another study in Neris and Rbot detection aims to explain the model using Random Forrest. 

In Malware detection, Saad et al. use the RB explanation to produce understandable features. 
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4.3 Adversarial attacks 

 

                                          Table 3: Summarize XAI methods in adversarial attacks. 

Local/Global Specific/agnostic Type 

Both Specific Text 

Both Agnostic Text 

Both Specific Text 

Both Agnostic Text 

Both Agnostic Text 

Both Agnostic Image 

Both Agnostic Image 

Both Agnostic Image 

Both Specific Graph 

Both Specific Image  

 

In the text attack context, Cheng et al. consider attacks against the Seq2Seck model, which is widely used in text 

summarization and translation. Another study utilized the sememe substitution method and PSO to introduce an 

attack model. Furthermore, methods utilize the text perturbation method to perform attacks depending on replacing 

the BERT mask as an element in the original text with text fragments. Another example of NLP is utilizing the 

effect perturbation morphological word and taking only considerations that affect the element of the original word. 

Another line of research for the image data type, A fast clipping approach that enforces the perturbation vector and 

computes the closest perturbation to the solution. Another method is gradient-based, stuck on the area near the 

boundary but shows its efficiency against gradient mask and is capable of optimizing many adversarial properties. 

Another line of methods that are not seeking optimal attack NATTACK  found a good adversary in the exists in 

gradient area with neighbors around a certain point. 

For graph data type, GNN-Meta-Attack is a method depending on meta-learning to solve time-training attacks and 

optimize the graph as hyperparameters. Table 3 shows the adversarial attacks.  

 

A recent study explains prediction on CNN using the heatmap activation function in the last CNN layer. 

4.4 Data Fusion 

Data fusion aims to examine and explain pollution incidents to learn how they are connected. To do this, one must 

first identify anomalous graphs and then correlate such graphs with representative event subjects. The scope and 

significance of the event on the divergence of the pollution concentrations are also analyzed.  

There are a total of 3629 photos used for train and 1725 used for testing in the MVTec Anomaly Detection 

dataset's 15 categories. There are no damaged pictures in the training set. You'll find faulty and perfect examples 

of each item in the test set.  

There are 15 classifications; the first 5 represent distinct regular (carpeting, grid) or randomized (leather, tile, 

wood) patterns, while the next 10 represent various items. While some, like the bottles and metal nuts, are solid 

and unchanging in appearance, others, like the cables and rocks, are flexible and subject to change (hazelnut). 

Items like toothbrushes, capsules, and pills were collected in a somewhat aligned stance. In contrast, other things 

were put in front of the camera at arbitrary angles (e.g., metal nut, screw, and hazelnut). Surface flaws (e.g., 
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scrapes, dents), structural flaws (e.g., warped portions of the item), and lack of components are only a few defects 

that may be found in test photos of weird samples. There are 73 distinct kinds of defects, with around five in each 

class. 

By adjusting the total amount of nodes in the encoder and decoder, we were able to compare the detectability of 

LSTM-autoencoders with varying structures and draw conclusions about the impact of the system on LSTM-

autoencoder efficiency. How many input layer nodes are represented by the decoder and decoding layers? The 

classification performance, model training duration, and variation in false alarm and leakage rates among networks 

were determined using a 5-fold cross-validation. The detection accuracy steadily increased as the number of nodes 

in the implied layer, both encoder, and decoder, grew, with little to no discernible variation in detection accuracies. 

However, the model's creation time ballooned as the number of nodes grew. 

Choosing a proper threshold is unnecessary if you evaluate anomaly segmentation methods using cutoff point 

metrics, like considering the area beneath a curve. However, to use an algorithm effectively, a threshold value 

must be chosen to assess whether or not a certain component is flawed. Due to the scarcity of out-of-the-ordinary 

data points available during training, this is a difficult challenge to solve. We believe that estimating a threshold 

purely on anomaly-free data is better, even if a limited number of anomalous examples were available for 

estimation. This is due to the fact that it is not known whether the given samples represent the whole spectrum of 

anomalies, and the predicted threshold may have poor performance for other unknown kinds. To identify even 

slight deviations, we need to determine a point that differentiates the normal data distribution from the remainder 

of the information manifold. 

Here, we look at three different approaches to threshold estimation for anomaly segmentation, all of which rely on 

testing on a collection of validation photos that have not been tampered with. We conducted studies to determine 

which criteria provide the best performance and how well each method translates from the validation to the test 

set. 

Sustained Effort at Its Highest Level An ideal solution would label every pixel in the validation photos as normal. 

This may be done by setting the threshold equal to the highest value of any anomaly score in the validation data. 

Because even a single aberrant pixel with a high anomaly value might cause thresholds to underperform on the test 

set, this prediction is generally quite cautious in reality. 

We rigorously compare and contrast several cutting-edge approaches to unsupervised anomaly classification on 

this dataset. Its ultimate purpose is to set a standard for procedures still to come. We compare and contrast the 

methods by discussing their performance on the dataset's objects and textures. We demonstrate that although each 

technique may identify specific kinds of abnormalities, none of the scenarios assessed really shines when applied 

to the whole dataset. For example, we demonstrate that strategies that use features learned by networks that have 

already been trained on a large Imagenet database provide the best results. It is clear that there is a lot of 

opportunity for development in deep learning-based unsupervised learning that is built from the start, such as 

multilayer autoencoders or generating stochastic networks. We evaluate how many performance parameters 

influence the final assessment score and compare several threshold estimation methods. We also detail how much 

memory and how long each assessed method takes to produce an assumption. 

The train divide of the dataset is used to add 10,000 training sets to each dataset class. Textures are cropped 

uniformly across all training photos from randomly chosen patches. To create the effect of moving and rotating 

objects, we randomly transform the whole input picture and then scale it to the exact dimensions as the 

autoencoder's source. Mirroring is enhanced in areas where the item allows it. 

Spot Anomalies Between Students and Instructors We employ 3 teacher network models trained on ImageNet to 

generate dense feature maps and evaluate Student-Teacher anomaly detection. 

Spotlight Dictionary The suggested CNN feature dictionary is used; however, we have our implementation. To 

inspect textures, a GMM-based model was developed. 
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Images are grayscaled and zoomed to a size of the input of 500 x 500 pixels, and information-related pyramids are 

built for training and assessment. A new GMM with a large correlation matrix is learned on each tier of the 

pyramid. To ensure uniformity throughout all pyramid tiers, we use a patch size of 9 by 9 pixels for all texture 

analyses. The evaluation model is shown in table 4.  

 

 

Table 4: Indicators of performance that are not reliant on a threshold. 

 Autoencoder Texture Feature Dictionary Teacher Validation 

Receiver operator characteristic 0.651 0.721 0.910 0.941 0.812 

Precision-Recall Curve 0.211 0.311 0.510 0.612 0.312 

Pro Curve 0.723 0.711 0.899 0.921 0.835 

 

Model of Variability The Variability Model is constructed by summing the means and standard deviations of all 

pixels across all training photos in the relevant dataset categories, regardless of scale. Aligned items in the photos 

are necessary for this to perform properly. In light of the fact that this is not still the situation, we developed a 

tailored alignment approach for our studies on the six main types of datasets. The shape-based comparison was 

used to align the bottle and steel nut, while template comparison with a normalised pass as the clustering method 

was used to align both grid and transistors. 

Here is how you can get an anomaly map from a sample photograph. Every pixel in the anomalous map is 

assigned a value based on its distance from the training mean value, as determined by dividing the grey value of 

the associated test pixel by a fraction of the training standard deviation. In the case of multichannel pictures, we do 

this procedure independently for every signal, and then we generate a global anomaly map by taking the maximum 

of each show's map on a pixel-by-pixel basis. 

Two layers, an encoder, and a decoder made up the LSTM-autoencoder architecture employed in the experiment. 

Nodes in the input neurons have the same sizes as the input eigenvalues, and half as many are used for the encoder 

and decoder layers. Figures 1 and 2 show the accuracy of the dataset.  

 

 

Figure 1: The threshold values for evaluation detection of the dataset. 
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Figure 2: The statistics values for evaluation detection of the dataset. 

 

5. Challenges and future work 

We will discuss research directions for future work depending on the existing challenges of investigation in XAI. 

Having reviewed implemented methods in XAI and contributions in three fields (anomaly detection, Network/IoT, 

adversarial attacks). 

Bias toward the Same type of data: it's noticed that many studies explore features of the image or tabular data, and 

just a few studies make combinations from audio and video. 

Method limitations: methods such as LIME and SHAP can be easily manipulated or mistaken to access only the 

needed data. SHAP is a slow kernel. Also, LIME takes only samples from Gaussian distribution and ignores the 

correlation between features. Also, a very commonly used method, especially in image SM, confirms the bias. 

More efforts are needed to solve these issues or implement powerful methods. 

Low feature explanation Some methods provide their explanation in terms of pixels, such as SM, but there is a 

need to build methods that give an explanation in higher explanation in terms of features or concepts. CA method 

that was reviewed in our work is to get the feature level explanation by determining the probability that a select 

feature has more contributions than other features. Further implementation using this method is needed. 

Hard to implement inherently interpretable models Intrinsic White-box model is still difficult to implement, 

especially in NLP or image processing which may scarify with the performance during the race of DL models in 

knowledge transfer from one domain to another. 

Performance against explanation still there is no exit for the model that can provide good DL model performance 

and good prediction explanation, especially since XAI methods can slow the learning process of the model. 

Limited contribution in intrinsic models it is noted that there are not many studies implementing inherently 

interpretable methods, which makes this lack of comparisons and is employed in many fields. 

Valuable knowledge in XAI knowledge methods still has a question on how to retrieve the valuable and important 

knowledge only. 

Guarantee security and privacy. One of the criteria of model transparency that we define is that model must protect 

the user-sensitive data and be able to deal with security issues to provide trust in AI systems and obtain fairness. 

So, it's crucial study direction that is importantly needed to confirm the proper use of data. 
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6. Conclusion 

In this work, we introduce a comprehensive work on explainable artificial intelligent methods. Corresponding to 

our work, the transparency model must determine four criteria Original/transformed data, Human-in-the-loop 

(HITL)/human-out-of-the-loop, Knows about the model, Model Security, and privacy considerations. We show the 

effect of using explainable methods on machine and deep learning models. We introduce all categories of 

explainable artificial intelligent methods and provide advantages and disadvantages for each method. Evaluation 

metric was introduced, such as Faithful and fidelity, Robustness, and reduced bias in the model in Pre-processing 

phase, In-processing phase, and post-processing phase. Furthermore, we provide a review of some explainable 

artificial intelligent applications such as Anomaly detection, Network/IoT, and Adversarial attacks. Moreover, 

explainable artificial intelligent methods still face many limitations and problems that are concluded in the 

challenges section. In conclusion, although many deep learning-based intelligent multimedia forensics methods 

have achieved notable results, there is still much future research work in this area that must be discovered. 
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