
Journal of Neutrosophic and Fuzzy Systems (JNFS)                                  Vol. 2, No. 1,  PP. 31-39, 2022 

Doi   :   https://doi.org/10.54216/JNFS.020104 
Received July 26, 2021 Accepted: Jan 08, 2022 

 

 31 

 

 

 

 

Data with Rough Attributes and Its Reduct Analysis   

Prem Kumar Singh1,* 

1Department of Computer Science and Engineering, 

Gandhi Institute of Technology and Management-Visakhapatnam, 

Andhra Pradesh 530045, India 

* Correspondence: premsingh.csjm@gmail.com , premsingh.csjm@yahoo.com 

ORCID: 0000-0003-1465-6572 

 

Abstract: Recent time many researchers focused on dealing the uncertainty and its characterization. The precise 

approximation of uncertainty in many-valued data set is one of the major tasks. It becomes more difficult in case the 

given data sets are non-Euclidean. Hence the rough fuzzy set and its graphical visualization is introduced in this 

paper for knowledge processing tasks. 
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1. Introduction 

The uncertainty and its approximation is considered as one of the major tasks for soft computing researchers [1-2]. It 

become more crucial while dealing the data with non-Euclidean [3-4] or cubic set [5].  To deal with this issue rough 

set and its properties is introduced by Pawlak [6-7]. The rough set given a way to approximate the given data sets 

based on its lower and upper approximation. Due to which the properties of rough set is applied in various fields for 

multi-decision process [8-11] as well as its graphical visualization [12-16]. This gave a way to characterize the 

uncertainty in three-way decision space [17-19]. In this process, a problem is addressed while dealing the data with 

rough attributes and its reduct. To solve this problem current paper focused on illustrating the data with rough 

attributes, its contextual representation and reducts.  
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The motive is to characterize them based on lower, upper and boundary regions as shown in Figure 1. The objective 

is to provide a basic understanding for new researchers for dealing the data with rough attributes.  

 

Figure 1: The motivation of this paper and its objective 

Rest part of the paper is organized as follows: Section 2 provides background Fuzzy and Rough set. Section 3 

contains the proposed method for characterization of rough context and its fuzzy membership-values with an 

illustrative example in Section 4. Section 5 contains conclusions followed by acknowledgements and references.   

2. Background   

This section provides the basic background to represent the data with rough attributes and its set approximation for 

decision making process. 

2.1 Information System 

 The Table 1 represents the data with information system where row represents the a set of non-empty objects 

{𝑂1, 𝑂2, . . 𝑂6}, the columns represents the attributes (A) with defined multi-valued information (R) in the given  

universe (𝑈). In this way it provides an information system with tuple of 4-attributes𝑆 =  (𝑈, 𝑅, 𝑉, 𝑓). It can be 

also represented as 𝑆 ∶=  (𝑈, 𝐴), where 𝐴 is non-empty set of attributes set such that for each 𝑅1 ⊆ 𝐴 where 𝑅 =

 (𝐶 ∪ 𝐷) i.e. subsets of conditional (C) and decision attributes (D). Table 1 represents following as conditional i.e. 

𝐶 =  {𝐴1, 𝐴2, 𝐴3} and decision attributes i.e. 𝐷 =  {𝐴4}, where 𝑉𝑖 is the set of values of 𝑖𝑡ℎ attribute i.e. 𝐴1: =

 {𝑦𝑒𝑠, 𝑦𝑒𝑠, 𝑦𝑒𝑠, 𝑛𝑜, 𝑛𝑜, 𝑛𝑜}, 𝑓 ∶  𝑅 → 𝑉is a description or information objective function. These data can be analyzed 

using the indiscernible relation and its set approximation.  
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           Table 1: The data with Rough Attribute and its contextual representation  

Objects Attributes Decision Flue (A4) 

Temperature(A1) Headache(A2) Muscles pain(A3) 

O1 normal yes yes no 

O2 high yes yes yes 

O3 Very-high yes yes yes 

O4 normal no yes no 

O5 high no no no 

O6 Very-high no yes yes 

 

2.2 Indiscernible Relation 

           The associated equivalence relation on universe (U) for a given nonempty subset of attribute set with any 

𝑅1 ⊆ 𝑅 is defined as 𝐼𝑁𝐷𝑆(𝑅1) ∶=  {(𝑥, 𝑦) 𝜖𝑈2 | ∀𝑟𝜖𝑅1(𝑟(𝑥) =  𝑟(𝑦)} , where (𝑥, 𝑦) 𝜖𝐼𝑁𝐷𝑆(𝑅1)  are defined as object 

x and y are inducible by attribute of from 𝑅1. The equivalence class of 𝑅1- indiscernible relations are denoted as 

[𝑥]𝑅1 . The pair of (𝑈, 𝐼𝑁𝐷𝑆(𝑅1) ), called estimated space. As for example: The set consists of nonempty subset of 

attributes “Headache” and “Muscle pain”  i.e., 𝐴1 and 𝐴2.𝐼𝑁𝐷(𝐴1, 𝐴2) ∶=  {{𝑂1, 𝑂2, 𝑂3}, {𝑂4, 𝑂6}, {𝑂5}} containing 

three indiscernible sets also called elementary sets, one definable set {𝑂1, 𝑂2, 𝑂3, 𝑂5}.Similarly, the other possible 

non-empty indiscernible subsets of 𝐶 are as follows: 

𝐼𝑁𝐷(𝐴1), 𝐼𝑁𝐷(𝐴2), 𝐼𝑁𝐷(𝐴3), 𝐼𝑁𝐷(𝐴1, 𝐴2, 𝐴3), 𝐼𝑁𝐷(𝐴1, 𝐴3), 𝐼𝑁𝐷(𝐴1, 𝐴2), 𝐼𝑁𝐷(𝐴2, 𝐴3). 

In this way the given information system can be defined based on approximating the set.  

2.3 Set Approximations 

It can be observed that the equivalence relations induce a partitioning of universe(𝑈), can be used to create a new 

subset that are more often of interest have the same values for decision attribute(𝐷).  Let 𝑅1 ⊆ 𝑅 be a desired subset 

of 𝑈. The description for 𝑅1 is desired when we can determine the membership status of each object in 𝑈 w.r.t 𝑅1, if 

the [𝑥]𝑅1  containing partial overlaps with any of the indiscernible defined for an object with an ambiguity. Such an 

object may not be distinguished, therefore the description of 𝑅1 is defined in-terms of lower (𝑃∗(𝑅1)), upper 

(𝑃∗(𝑅1)) approximation sets respectively also called as positive (POS), negative (NEG) and boundary regions 

(BND) as follows: 

𝑃∗(𝑅1)  =  𝑃𝑂𝑆 (𝑅1)  = {𝑥𝜖𝑈 | [𝑥]  ⊆ 𝑅1}, where [𝑥]denotes the equivalence-class of 𝑥. ………………………(i) 

                      

𝑃∗(𝑅1)  =  𝑁𝐸𝐺 (𝑅1)  = {𝑥𝜖𝑈 | [𝑥]  ∩ 𝑅1  ≠ 𝛩}    …………………………….…(ii)  

𝐵𝑁𝐷 (𝑅1)  = 𝑃∗(𝑅1)  −  𝑃∗(𝑅1)       ………………………(iii) 
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Figure 2:  The rough set theory approximations of Table 1  

A set 𝑅1 for which 𝑃∗(𝑅1)  = 𝑃∗(𝑅1)  is called as “exact set” otherwise rough-set w.r.t 𝑃. If an object 𝑥 ∈ 𝑃∗(𝑅1), 

then it belongs to target-set  𝑅1 certainly. For any target or decision attribute subset 𝐷 ⊂ 𝑈and conditional attributes 

𝐶 ⊂ 𝑅, 𝐷 is obtained as roughset when 𝑃∗(𝑌)  ≠ 𝑃∗(𝑌).The roughness of set 𝐷 w.r.t  𝐶 is identified as follows: 

𝑃𝐶(𝑌)  =  1 − 
|𝑃∗(𝑌)|  

|𝑃∗(𝑌) |
, where 𝑌 ≠ 𝜙 (if 𝑌 =  𝜙, then 𝑃𝐶(𝑌) = 0); |. |  denote the cardinality essence of a set. 

Similarly, correctness is defined as 𝛼𝐶(𝑌)  =  
|𝑃∗(𝑌)|  

|𝑃∗(𝑌) |
, then apparently 0 ≤ 𝛼𝐶(𝑌)  ≤ 1. If 𝛼𝐶(𝑌) =

 1, 𝑡ℎ𝑒𝑛 𝑌 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 CRISP 𝑤. 𝑟. 𝑡 𝐶, 𝛼𝐶(𝑌) <  1 𝑡ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 "𝑅𝑂𝑈𝐺𝐻". If an object, 𝑥 ∈ 𝑃∗(𝑅1), it cannot be 

determined whether it belongs to the target or not. If an object, 𝑥 ∈ 𝐵𝑁𝐷(𝑅1), then it does not belong to target-set 

𝑅1certainly. A set is said to be “ROUGH”, if it's  𝐵𝑁𝐷 (𝑅1)  ≠ 𝜙, otherwise the set is “CRISP”. As for example, the 

objects 𝑂2 and 𝑂5 can not be distinguished (i.e indiscernible) from anyone of the attributes shown in Table 1. Hence, 

the objects present in 𝐵𝑁𝐷 (𝑅1) region is {𝑂2,𝑂5}, which can not be classified properly based on knowledge 𝑂2 and 

𝑂5 as shown in Figure 2. It shows that 𝑂2&𝑂5are boundary line cases. The remaining objects in lower and upper 

regions as follows: 

𝑃∗(𝐹𝑙𝑢 =  "𝑦𝑒𝑠")  =  {𝑂1, 𝑂3, 𝑂6}, 𝑃∗(𝐹𝑙𝑢 =  "𝑛𝑜")  =  {𝑂4} , 𝐵𝑁𝐷(𝑅1)  =  {𝑂2, 𝑂5} ………………………(iv) 

𝑃∗(𝐹𝑙𝑢 =  yes) =  {𝑂1, 𝑂2, 𝑂3, 𝑂5, 𝑂6}, ………………………………………………………………………(v) 

𝑃∗(𝐹𝑙𝑢 =  "𝑛𝑜")  = {𝑂2, 𝑂4, 𝑂5}, 𝐵𝑁𝐷(𝑅1)  =  {𝑂2, 𝑂5}……………………………………………………(vi) 

In this way, the set of approximation and its rough membership can be defined. To achieve this goal, a step by step 

method is illustrated in the next section.  
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3. The Rough Membership, Core and Reduct Analysis 

It can be observed that, the data with rough attributes can be approximated based on lower, upper and 

boundary regions. The problem is how to characterize them in a membership function. To resolve this issue 

step by step demonstration is discussed in this section as given below:  

3.1 Defining the Rough Membership Functions 

   The set approximations can be defined based on the degree of overlapping regions between the {𝑋}-set and the 

equivalence membership relation 𝑅(𝑋), to which the object 𝑥 belong to a set or not,  it is defined using the 

membership function shown below:   

 

Figure 3: The characterization of rough-attributes as Membership Functions 

𝜇 𝑥
𝑅 ∶  𝑈  → ≼ 0,1 ≻, i.e., function accepts only the values 1 and 0 respectively, where 𝜇 𝑋

𝑅  (𝑥)   =  
|𝑋 ∩ 𝑅(𝑥)|

|  𝑅(𝑥)  |
and |.| 

called the cardinality essence of an attribute (𝑋).  The meaning of rough -membership function indicates the 

assumptions and boundary regions of a set (𝑋) is defined as below equations and its diagrammatic representations 

are shown in Figure 3. 

𝑅 ∗ (𝑋)  =  { 𝑥 𝜖  𝑈 ∶ 𝜇  𝑋
𝑅  (𝑥) =  1 }                   ……………………(vii) 

𝑅 ∗ (𝑋)   =  { 𝑥 𝜖  𝑈 ∶ 𝜇  𝑋
𝑅  (𝑥)  >=  0 } ……….…………(viii) 

𝑅 ∗ (𝑋)   =  { 𝑥 𝜖  𝑈 ∶ 0 <  𝜇  𝑋
𝑅  (𝑥)  <  1 } ……………………(ix) 

3.2 Dependency of Decision System Attributes 

The major issue with the Decision System is to identify same or indiscernible-objects that may appear several times, 

due to this the attributes of (𝐶 ∪ 𝐷) leads to superfluous for most of the Machine Learning Classifiers to design an 
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effective Classification Model. Finding dependency and removal of such attributes may not degrade the performance 

of classification models. The decision system with 𝐴𝑖attributes totally depends on predicted attribute set𝐷, and its 

relation called as 𝐴𝑖  → 𝐷, if all the values in attribute 𝐴𝑖 are uniquely identified (classify) by the values of 𝐷i.e., 

𝐴𝑖depends on 𝐷, there exists functional dependency. In more general, the concept discusses about the partial 

dependencies of attributes i.e., only some set of 𝐴𝑖 values are classifying the values of decision attribute(𝐷). The 

RST introduce a degree of dependency measure to calculate dependency between two subset of attributes (𝐴𝑖 , 𝐷 ⊆

𝑅) is denoted as 𝜆𝐴𝑖
(𝐷). It is defined as shown below : 

𝜆𝐴𝑖
(𝐷) = 

𝑐𝑎𝑟𝑑 (𝑃𝑂𝑆𝐴𝑖
(𝐷))

𝑐𝑎𝑟𝑑 (𝑈)
, where 𝑃𝑂𝑆𝐴𝑖

(𝐷) = ∪𝑋 𝜖 𝑈/ 𝐼𝑁𝐷(𝐷) 𝐴𝑖∗
(𝑋)  ………………………(x) 

The set 𝑃𝑂𝑆𝐴𝑖
(𝐷), positive region containing possible elements of 𝑈that can be uniquely distinguished from the 

partition 
𝑈

𝐼𝑁𝐷(𝐷)
 by𝐴𝑖. The objects of 𝜆𝐴𝑖

(𝐷)represents fraction of total no. of objects in the universe (𝑈)that can be 

properly classified the elements of decision attribute𝐷. If 𝐴𝑖totally depends on,𝐷 then 𝜆𝐷(𝐴𝑖) = 1; else 𝜆𝐷(𝐴𝑖)< 1.  

For better understanding the concept from above table (), the dependency of FLU (𝐴4)on Temperature(𝐴3), we 

observe that the values of (𝐴3)uniquely identifies some values of decision attribute(𝐴4), i.e., (𝐴3, very high)⇒

(𝐴4, 𝑦𝑒𝑠), similarly(𝐴3, 𝑛𝑜𝑟𝑚𝑎𝑙) ⇒ (𝐴4, 𝑛𝑜), but(𝐴3, ℎ𝑖𝑔ℎ) ≠ (𝐴4, 𝑦𝑒𝑠), hence there exist partial dependence 

between  𝐴3 and𝐴4. To determine 𝜆𝐴3
(𝐴4) using above equation as shown below: 

𝑈 =  {𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5, 𝑂6} and 
𝑈

𝐼𝑁𝐷(𝐴4)
=  {{𝑂1, 𝑂2, 𝑂3, 𝑂6}, {𝑂4, 𝑂5}} 

𝑃𝑂𝑆𝐴3
(𝐴4)  =  {𝑂3, 𝑂6} ∪ {𝑂4}  =  {𝑂3, 𝑂4, 𝑂6} ,  

Thus𝜆𝐴3
(𝐴4)  =  3/6 =  0.5. Similarly, 𝜆𝐴1

(𝐴4)  =  0 and 𝜆𝐴2
(𝐴4)  =  0. 

3.3 Accuracy Approximation 

For a given real time decision system𝑆 =  (𝑈, 𝑅, 𝑉, 𝑓), for any target variable subset 𝑋 ⊆ 𝑈 and its attribute 

subset𝐴 ⊆ 𝑅, the roughness of set 𝑋 w.r.t 𝐴 about the classification model can be defined as below Eq. (3.8). 

𝑃𝐴(𝑋)  =  1 − 
|𝑅 ∗ (𝑋)|

|𝑅 ∗ (𝑋)|
    , obviously 0 ⪯ 𝑃𝐴 ⪯ 1,when 𝑋 ≠ 𝜙; if 𝑋 =  𝜙,then 𝑃𝐴(𝑋) = 0; if 𝑃𝐴(𝑋)  =  1,then 𝑋 is 

said to be “CRISP” w.r.t 𝐴; similarly when 𝑃𝐴(𝑋)  <  1,then 𝑋 is called “ROUGH” w.r.t 𝐴. 

3.4 Reducts 

One often a raises the question, how to remove irrelevant or redundant/superfluous attributes from a decision system 

by preserving its basic intrinsic properties including appropriate representation space for the learning system. RST 

allows identifying equivalence or in-discernible class relations, finds a minimal attribute subset that differentiate the 

entire classes of decision-attribute without deteriorating the performance of the classification model or towards 
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decision making applications. There are several such minimal attribute subsets called “REDUCTS” of the original 

set which retain the accuracy like the original set, and thus reduce the computational time. 

3.5 Core 

The set of conditional attributes(𝐴𝑖) are unreliable in 𝑇, denoted as 𝐶𝑂𝑅𝐸(𝐴𝑖) , such that 𝐶𝑂𝑅𝐸(𝐴𝑖)  = ∩ 𝑅𝐸𝐷(𝐴𝑖)  

i.e intersection of all 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑟𝑒𝑑𝑢𝑐𝑡𝑠  is termed as 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 , each object of the core belongs to some reduct with 

an important minimal subset of attribute set, and further none of its objects could be excluded. 

For example table 3.1, have two possible reducts i.e., 𝑅𝐸𝐷1 =  {𝐴3, 𝐴1} and 𝑅𝐸𝐷2 = {𝐴3, 𝐴2} w.r.t decision 

attribute 𝐴4, the intersection (core) of the decision Table 1 is 𝐴3. Table 2 and Table 3 represents the minimal 

decision tables of 𝑅𝐸𝐷1 and 𝑅𝐸𝐷2. In this way the rough provides a way to deal with multi-valued data for decision 

making process.  

                                  Table 2: The RED1 for data with rough attributes shown in Table 1 

Objects Attributes Decision Flue (A4) 

Temperature(A1)  Headache(A3) 

O1 normal yes no 

O2 high yes yes 

O3 Very-high yes yes 

O4 normal no no 

O5 high no no 

O6 Very-high no yes 

 

                  Table 3: The RED2 for data with rough attributes shown in Table 1 

Objects Attributes Decision Flue (A4) 

Temperature(A1)  Muscles pain(A3) 

O1 normal  yes no 

O2 high  yes yes 

O3 Very-high  yes yes 

O4 normal  yes no 

O5 high  no no 

O6 Very-high  yes yes 
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In this way, the core and reduct of given rough context can be investigated. However, the characterization of rough 

attributes and its visualization is another issues. The author will try to focus on this issue in near future for 

knowledge processing tasks. 

4. Conclusions  

This paper introduces step by step method for dealing data with rough attributes, its approximation as well as 

rough membership function. The core reduct is also illustrated with an example. In near future the author will focus 

on defining the fuzzy rough membership and its graphical visualization for knowledge processing tasks.   
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