
Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

20

Efficient Share Generator for Slicing and Securely Retrieving the
Cloud-Hosted Heterogeneous Multimedia Data

Khaled Riad1,2
1Department of Computer Science, College of Computer Sciences & Information Technology, King Faisal

University, Al-Ahsa 31982, Saudi Arabia (e-mail: kriad@kfu.edu.sa)
2Mathematics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt (e-mail:

khaled.riad@science.zu.edu.eg)

Abstract

Recently, the security of heterogeneous multimedia data becomes a very critical issue, substantially with the
proliferation of multimedia data and applications. Cloud computing is the hidden back-end for storing heterogeneous
multimedia data. Notwithstanding that using cloud storage is indispensable, but the remote storage servers are
untrusted. Therefore, one of the most critical challenges is securing multimedia data storage and retrieval from the
untrusted cloud servers. This paper applies a Shamir Secrete-Sharing scheme and integrates with cloud computing to
guarantee efficiency and security for sensitive multimedia data storage and retrieval. The proposed scheme can fully
support the comprehensive and multilevel security control requirements for the cloud-hosted multimedia data and
applications. In addition, our scheme is also based on a source transformation that provides powerful mutual
interdependence in its encrypted representation—the (𝑡, 𝑛) Share Generator slices and encrypts the multimedia data
before sending it to the cloud storage. The extensive experimental evaluation on various configurations confirmed the
effectiveness and efficiency of our scheme, which showed excellent performance and compatibility with several
implementation strategies.

Keywords: Multimedia data, Cloud security, Cryptography, Shamir Secret-Sharing, Swift

1. Introduction
The proliferation of individual data commonly owns several devices, such as mobile phones, tablets, and personal
computers. Also, the data generated by the smart homes, hospitals, companies, smart cities, and even military
organizations is massively increasing. Multimedia data consists of various media types like text, audio, video, and
animation. Accordingly, the security assurance of multimedia data is a very critical and significant issue. For example,
and not as a limitation, the medical and military must contain sensitive information that unauthorized users should
neither reveal nor access. Since cloud computing is the hidden back-end for storing heterogeneous multimedia data.
The process of hosting multimedia data onto untrusted cloud servers is indispensable [1]. Therefore, it is urgent to
support the security of multimedia data and design efficient schemes for securely storing and retrieving such sensitive
data [2], [3].

Many research studies have been conducted to address the multimedia security issues, such as in [4], the authors deal
with security and privacy issues for multimedia database management systems. Also, in 2018 the Multimedia Tools
and Applications Journal has organized a special issue [5], which addresses a variety of security and privacy issues of
multimedia big data in mobile and cloud computing and security of other aspects of mobile and cloud networks
emphasizes many open questions. The authors in [6] also developed and designed a resource-efficient encryption
algorithm system that applies the multithreaded programming process to encrypt the big multimedia data. However,
most of the existing contributions mainly focus on document protection without considering the spatial and temporal

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

21

characteristics of multimedia data. As well as, there is no consideration for the size of multimedia data to be stored or
retrieved by neglecting the object size in their experiments. To the best of our knowledge, the heterogeneous
multimedia data should be sliced in case of storage and retrieval for multimedia data privacy and efficiency.

We think about slicing the heterogeneous multimedia data, then encrypting these slices before sending them to the
untrusted cloud servers. The data owner has to slice and encrypt its own data with a specific key. On the other hand,
on the client's side, the requested multimedia data slices are only downloaded, and the data are extracted from it. There
is no need to download the whole multimedia database for secure decryption. Blakley [7] and Shamir [8] introduced
schemes for the case where the places whose cardinality is at least a specific threshold that is the threshold scheme.

In this scheme, we consider using (𝑡, 𝑛) Secret sharing was introduced in [7], [8] to store multimedia data slices on
the cloud servers. However, the size of the shares must not become less than the size of the secrets (multimedia data
slices). Then, the amount of share which servers have been increased by more than n times as a whole. That is to say,
the amount of share is represented by the multiplication of the number of shares and the size of each multimedia data.
To solve this problem, we consider using the (𝑡, ℓ, 𝑛) Ramp scheme [9], where the size of share can be reduced to
1/ℓ, compared with that when (𝑡, 𝑛) Secret sharing is used. However, one drawback of using a Ramp scheme is that
as the size of shares is reduced, it gradually becomes possible to obtain the secret from fewer than t pieces of shares.
In summary, the (𝑡, 𝑛) Secret sharing is not suitable for storing multimedia data on cloud computing because of the
problem of the size of the share, and the Ramp scheme is also not ideal because of the gradual information leakage.

1.1 Motivation
In addition to reducing the amount of share by encoding multiple secrets with one key and the single key problem, a
set of issues arise. This is behind our motivation to introduce our share generator for slicing and secure retrieval of
cloud-hosted multimedia data.

• In heterogeneous multimedia data, the user who reconstructs multimedia data slices is distinct from the user
who distributes them,

• The user who distributes multimedia data slices should encrypt these slices using different keys and distribute
the ciphertext. Because if these slices are encrypted by the same key, once another user reconstructs a slice,
he can get the decryption key for all slices, and

• If we reduce the amount of share, it should encrypt these slices in the same encryption key. Thus, the amount
of share is adequate only for the multiple slices reconstructed by one user or when each slice is sufficiently
more significant than the encryption key.

Therefore, there is an urgent need to introduce a scalable and distributed share generator scheme, which is integrated
with cloud computing for securely storing and retrieving heterogeneous multimedia data.

1.2 Contributions
One of the primary contributions of this paper is incorporating the Shamir Secret-Sharing scheme [8] with cloud
storage to ensure both the retrieval efficiency and secrecy of the heterogeneous multimedia data stored on the untrusted
cloud servers. Our proposed scheme can encrypt the multimedia data slices before storing them on the untrusted cloud
servers and reconstruct the requested multimedia data slice only, without downloading the whole multimedia database.
The primary contributions can be outlined as follows:

• We have integrated Shamir Secret-Sharing scheme with cloud computing to ensure the sensitive multimedia
data security when sending them to the untrusted cloud servers and during receiving it;

• We have implemented the proposed scheme on the top of our private cloud environment by initializing a set
of virtual instances that are divided into three categories based on their configuration and role in the proposed
scheme;

• We have analyzed the performance of our proposed scheme under three distinct situations–overlay situation,
storage situation, and client situation; and

• The experimental results have confirmed the effectiveness and efficiency of our proposed scheme, which is
compatible with all reasonable scenarios.

1.3 Organization

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

22

This paper is organized as below. Section 2 presents the related work and discussion. The scheme preliminaries
represented in the basic understanding of the threshold Shamir secret-sharing scheme are introduced in Section 3. This
is followed by the problem we will solve, and the flawed strategy is presented in Section 4. Section 5 offers our
proposed t-out-of-n scheme. The scheme implementation is presented in Section 6. Our performance analysis
according to two different scenarios is introduced in Section 7. This is followed by the conclusions in Section 8. v

2. Related Work
The notion of producing the extraction of the information content of an information origin must think about the
security of the decryption process. Also, downloading only the requested slice of information instead of downloading
the whole object. There is a great growth in multimedia data hosted on cloud computing. Dealing with multimedia
data through cloud computing is a challenge [10]. The storage and retrieval of multimedia data while linking it to
either cloud computing or big data is a hot topic. As well, content-based multimedia encryption and deduplication are
new and open areas. The authors in [11] have proposed a secure tensor singular value decomposition (S-tSVD). They
have introduced various multimedia data as cipher subtensors, using fully homomorphic encryption. They have
introduced a new multiplication operation based on the Fourier transform. The authors in [12] have investigated access
control and authorization functions, and they have discussed how to advance them for network slicing deployments
with continuous and closed-loop usage control mechanisms.

Since storing small amounts of multimedia data leads to a significant standard deviation of storage space, a high failure
rate of storage nodes, and poor quality of data storage. The authors in [13] have introduced a machine learning-based
multimedia key area synchronous storage method. The method uses a genetic algorithm to calculate the distance
between data in multimedia critical area and cluster center, and redistribute cluster set, K-Mean is realized by M-R
parallel computing model. To meet the needs of multimedia communication in the multi-cloud environment and
improve the experience quality of mobile multimedia users. The authors in [14] proposed an autonomous computer
system based on cooperative cognition and multimedia data behavior measure. The authors in [15] exploited textual
reviews and item images together with ratings to tackle the latent factor model limitations. However, it suffers from
many problems, including cold-start, non-transparency, and suboptimal results for individual user-item pairs
limitations. To improve the storage efficiency and reduce the management expenditure of these massive multimedia
data in heterogeneous networks, the direct way is multimedia data deduplication. However, it raises serious privacy
concerns and poses new security challenges, such as privacy leakage, side-channel attacks, and unauthorized access.
The authors in [16] introduced an adaptive access control based on XACML access policies used for heterogeneous
distributed IoT environments.

The multimedia data security and privacy are always hot topics. The authors in [17] propose a novel role symmetric
encryption (RSE) algorithm and an RSE-based proof of ownership (RSE-PoW) scheme for secure deduplication in
hierarchical heterogeneous environments. The authors in [18] have introduced a new operative scheme called
RoughDorid for detecting malware applications directly on the smartphone. The authors in [19] suggested a novel
data retrieval scheme for multiple users based on the lattice-based mechanism. There is another contribution [20] for
applying access control in the cloud by introducing the trust notation for granting or denying access, which can be
extended and used for the multimedia data. The authors in [21] proposed a scheme that approximates the Sigmoid
function as a polynomial function to support the secure computation of the activation function with the BGV
encryption. Only the client performs encryption and decryption operations in our scheme, while all the computation
tasks are performed on the cloud. But in our scheme, the encryption and decryption are executed by using the share
generator that is secure and efficient in doing that. In this way, there is no computation overhead on the owner or the
user. The authors in [22] have developed a novel aspect-aware recommender model named A3NCF, which can capture
the varying aspect attentions that a user pays to different items. Finally, the authors in [23] introduced a dynamic
access control for IoT devices using multi-authority cloud storage.

According to multimedia data retrieval, the authors in [24] presented a practical and economic architecture named
SHMR (Semantic-based Heterogeneous Multimedia Retrieval), which uses low cost to store and retrieve semantic
information from heterogeneous multimedia data. Also, the authors in [25] proposed Multi-graph Cross-modal
Hashing (MGCMH) based on unsupervised multi-graph cross-modal hashing. The proposed model comprehensively
considers three fundamental problems that should be seriously considered in multimedia retrieval. The authors in [26]

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

23

have used private information retrieval to guarantee secure IoT data storage and retrieval from untrusted cloud servers.
The authors in [27] presented an optimized algorithm called semantic ontology retrieval (SOR), which uses big data
processing tools to store and retrieve ontologies from heterogeneous multimedia data. The authors in [28] proposed a
multi-view discriminative and structured dictionary learning with group sparsity and graph model (GM-GS- DSDL)
to fuse different views and recognize human actions. The authors in [29] presented a novel multimedia hashing
framework called Label Preserving Multimedia Hashing (LPMH) for multimedia similarity search. In LPMH, a
general optimization method learns the joint binary codes of multiple media types by explicitly preserving semantic
label information. The authors in [30] proposed a standard graph regularization-based modality-dependent cross-
media retrieval approach (JGRMDCR), which considers the one-to-one correspondence between different modal data
pairs, the inter-modality similarities, and the intra- modality similarities.

To the best of our knowledge and understanding, dealing with such numerous and massive multimedia data as a single
block of data is impossible. Therefore, there should exist some schemes for segmenting these heterogeneous data to
efficiently and securely manage it. Our proposed scheme slice, encrypt, and then host the multimedia data on the
untrusted cloud servers, to benefit from the cloud computing storage advantages. At the same time, we can securely
retrieve only the requested multimedia data slices without downloading the whole database first for secure decryption.

3. Scheme Preliminaries
To continue with the full description of our scheme, we should first introduce one of the most essential parts in
constructing our scheme, which is Shamir Threshold Secret- Sharing scheme. In the threshold secret-sharing scheme
[31], the users that are allowed to reconstruct the share are the set of all users, where the size of such a group is more
significant than a specific threshold. This will introduce a t out-of n access structure. Finally, it should be mentioned
that the simplest way of reconstructing (recovering) the original data from a set of shares is shown in Figure 1.

Figure 1. Shamir's threshold secret-sharing for data sharing and reconstruction.

As shown in Figure 1, we can generate n shares of the data according to the threshold secret sharing scheme, as shown
in (a); these n shares are distributed into n parties. At any time, we can recover the original data by collecting arbitrary
t or more shares, as shown in (b). With the lapse of time, for some reason, either the leaving of the shareholder or the
share's losing and deletion could lead to the decline in the number of shares. When the number of shares that can be
gathered is more minor than t, the data cannot be reconstructed, as shown in (C).

4. Problem Formulation
One of our primary goals is to reduce the amount of share, which can be realized by encoding multiple secrets with
one key. On the other side, the one key problem arises. Also, according to the nature of multimedia data, the user that
distributes the multimedia data (data owner) is different from the user that requests access. Thus, the data owner should
handle with much care the keys used for distributing his multimedia data. Therefore, the multimedia data owner should
be online all the time that is not realistic. Finally, we urgently need to find an effective and successful access control
to manage such situations in the cloud-hosted multimedia data.

We will introduce a novel scheme based on Shamir Secret-Sharing and prepare it to be compatible with hosting and
receiving multimedia data from cloud computing environments. The proposed scheme consists of instances, devices,

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

24

and machines, each of which has its configuration. Moreover, each instance, device, or machine in the system can
manage a particular part of the proposed scheme, as shown in Figure 2.

Figure 2. Cloud-integrated Shamir Secret-Sharing and share generator system model.

4.1 Share Generator
The (𝑡, 𝑛) Share Generator in the proposed scheme is an important machine that has three different phases of
communications. First, it accepts the users' queries and responds to them with the answers after receiving them. Also,
it receives the multimedia data from the owners and prepares it to be stored on the cloud servers. The primary tasks
of (𝑡, 𝑛) Share Generator are as follows:

• Receiving multimedia data from the data owners, slicing the received multimedia data, encrypting each slice,
and submitting these slices to Shamir-Distribution instance;

• Accepting users' queries, partitioning the query, and submitting the query set to Shamir-Reconstruction
instance;

• Receiving the responses to the requested queries from
• Shamir-Reconstruction instance; and
• Submitting the answer to the user after grouping it to the user represents the answer of the submitted query

by the user previously submitted to the (𝑡, 𝑛) Share Generator.

4.2 Distribution and Put_Management
In this part, we have two primary virtual instances (Shamir- Distribution, and Put_Management) hosted on the cloud
environment. Those instances are of X-large configuration (8 VCPUS, 160 GB disk space, and 16384 MB of RAM)
to handle the massive stream of requests and processes. At first, Shamir-Distribution instance has the following
responsibilities:

• Receive the encrypted multimedia data slices from the (𝑡, 𝑛) Share Generator;
• Run Shamir-Distribution (Algorithm 1) to generate a set 𝑠!, … , 𝑠" of shares for each participant (multimedia

data slice); and
• Submit the generated set of shares directly to the Put_Management instance to be stored on the cloud servers.
• The Put_Management instance is responsible for:
• Receiving the set of shares generated by Shamir-Distribution algorithm;
• Communicating with a group of cloud storage servers and database servers to store the acquired shares; and
• Storing each share on a specific server to disclose the identity of the stored encrypted shares neither in the

storage process nor in requesting a particular slice of multimedia data.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

25

It needs to be mentioned here that Shamir-Distribution and Put_Management instances are on the same network of
the cloud servers and database servers. Thus, the communication between them has no time.

4.3 Reconstruction and Get_Management
We can find on the other side from the Distribution and Put_Management, reconstructing the previously-stored shares
is done based on two practical instances (Shamir-Reconstruction and Get_Management). Once Shamir-
Reconstruction receives 𝑘-requests from the (𝑡, 𝑛) Share Generator will forward the requests to the
Get_Management instance. As one of the essential duties of Get_Management instance, it will get 𝑘-answers from
those servers hosting these answers. The 𝑘-answers are the direct responses for the 𝑘-requests by Shamir-
Reconstruction. The Get_ Management instance has the following duties:

• Get 𝑘-answers from multiple cloud storage serves that are the answers to the 𝑘-requests introduced by
Shamir-Reconstruction instance; and

• Send the gotten 𝑘-answers to another algorithm (Shamir-Reconstruction).

The Shamir-Reconstruction instance has a critical role:

• Receive 𝑘-request from the (𝑡, 𝑛) Share Generator machine;
• Receive the 𝑘-answers from the Get_Management instance;
• Run Shamir-Reconstruction (Algorithm 2) to generate the secret 𝑆 of a specific share requested by the (𝑡, 𝑛)

Share Generator; and
• Send the generated share to the requesting Share Generator.

It should be mentioned that Shamir-Reconstruction and Get_Management instances are of X-large configuration.

4.4 Cloud Storage
In our scheme, most of the considered instances and machines are implemented based on a private cloud environment
built using OpenStack [32]. The cloud environment is built using three physical servers with high physical capabilities
working as controller, neutron, and compute nodes. We have initialized various virtual instances with Large (4
VCPUS, 80 GB disk space, and 8192 MB of RAM) configurations on the same local network working as cloud storage
servers. As well as initializing some virtual instances with X-large configuration, working as database servers. It
should be mentioned that both the cloud storage servers and the database servers are on the same network.

The cloud storage and database servers are organized into multiple tenants; each tenant has its tenant manager. This
organization eases the work of both the Put_Management and Get_Management servers in storing and reconstructing
its shares. The tenant manager is responsible for storing the shares generated by Shamir-Reconstruction and provided
to it by the Put_Management instance. Also, the tenant manager is responsible for getting the shares back from the
servers under its management and send them back to the Shamir-Reconstruction through the Get_Management
instance.

4.5 Users and Data Owners
The multimedia data owners care about the security of their multimedia data, and they are always worried that the
cloud servers may introduce their data to unauthorized users. Therefore, the data owners provide the multimedia data
to the (𝑡, 𝑛) Share Generator that will slice and encrypt it before submitting it to the cloud storage servers. On the
user's side, the user has to issue a query that will be verified by the (𝑡, 𝑛) Share Generator before forwarding it to
Shamir-Reconstruction.

5. Our Construction
Our proposed scheme integrates the Shamir Secret-Sharing scheme with cloud computing to guarantee private
information security during storing and receiving it from the untrusted cloud servers. Our scheme consists of three
primary stages: Encryption and Storage, Authorization and Query, and Decryption and Reconstruction.

5.1 Encryption and Storage
The multimedia data 𝒟 is going to be stored on multiple untrusted cloud servers using (𝑡, 𝑛) Secret sharing. In cloud
storage, we believe the users who reconstruct the multimedia data are different from those who spread (owner) it. In

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

26

cases like this, the owner should encrypt its multimedia data using other keys and distribute the ciphertext in the same
way as in [33]. He can find the key because in the event precisely, the same key encrypts the information shares
reconstructs the information. Thus, we will consider two managing servers to store multimedia data, as shown in
Figure 2. The Put_Management, which receives the encrypted multimedia data slices and stores them on the untrusted
storage servers under its control, and the Get_Management, which manages the requests from the (𝑡, 𝑛) Share
Generator.

Definition 1: ((𝒕, 𝒏) Shamir Secret-Sharing): (𝑡, 𝑛)-threshold secret sharing scheme is a method of distributing a
secret to n participants in such a way that any group of t (threshold) or more participants can later find the secret
(1 ≤ 𝑡 ≤ 𝑛), whereas no group of fewer than t participants can do so. Each participant is given some partial
information, called a share. It consists of two algorithms:

• Distribute: The distribution algorithm carries the key 𝑆 and divides 𝑆 to 𝑃 shares, with every 𝑃# getting a
share 𝑠# (Algorithm 1).

• Reconstruct: The reconstruction algorithm gathers every share 𝑠# from every 𝑃# and utilizes the shares to
reconstruct the key 𝑆 (Algorithm 2).

Algorithm 1: Shamir-Distribution
Input: Secret 𝑆 ∈ 	𝔽$
Input: A set 𝑃 = 𝑃!, … , 𝑃" of participants
Input: A threshold value 1 ≤ 𝑡 ≤ 𝑛

1: Select random values 𝑟!, … , 𝑟"%! ∈ 	ℤ&'
2: Construct the polynomial 𝑟(𝑥) = 𝑠 + 𝑟!𝑥 +⋯+	𝑟"%!𝑥"%!
3: for 𝑖 = 1 to 𝑛 do
4: Send share 𝑠# =	𝑟# to 𝑃#
5: end for

Output: A set {𝑠!, … , 𝑠"} of shares for each 𝑝#

Algorithm 2: Shamir-Reconstruction
Input: A set 𝑋 ⊂ 𝑃!, … , 𝑃" of size 𝑢 participants
Input: A set of shares 𝑠# for each 𝑥# ∈ 𝑋

1: Compute 𝑆 = 	∑ 𝑠# 	𝜆(,*!*!∈(with 𝜆(,*! =	∏
,
,%!,∈(#

Output: The secret 𝑆

The secret sharing scheme will be employed to store multimedia data 𝒟, which will be split into (𝑥!, 𝑥-, … , 𝑥, , … , 𝑥.).
Our scheme will encrypt (𝑥!, 𝑥-, … , 𝑥, , … , 𝑥.) as stated by the access structure 𝒜. We will presume that the ciphertext
implicitly includes the access structure. Then, we will utilize the Hash function as a permutation function, which is
used for hiding the index of the portioned slices of multimedia data to be stored. Our storage objective is to get each
component stored on each server for each piece of the multimedia data to be stored F𝑆ℎ𝑎𝑟𝑒(𝒟, 𝑘, 𝑡, 𝑥#) =
J𝑆!# , 𝑆-# , … , 𝑆/# KL.

The proprietor encrypts the multimedia data pieces with a content key, each using symmetric encryption procedures.
It then encrypts the content essentially. It requires as input the public primary key managed by Shamir secret sharing
scheme. The encryption process is illustrated as follows: There is a content key 𝑐𝑘 and an access structure 𝒜 = (𝑀, 𝜌).
The access structure will first encrypt the multimedia data, and the content key is also used in the encryption process
before sending the multimedia data to the untrusted cloud servers. Also, the encryption process takes as input the
multimedia data Public Key (PK), which Shamir Secret-Sharing manages. Then, we should choose random secrets
F𝛼# , 𝛽# , 𝛾# ∈ ℤ$∗ L for each multimedia data slice 𝑥# to be encrypted. Also, choose a random encryption exponent 𝑓 ∈
	ℤ$∗ .

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

27

After that, the encryption process chooses a random vector 𝜈 = [𝑓, 𝑦-, … , 𝑦.]1 ∈ 	ℤ$∗. that is used to share the random
encryption exponent 𝑓. The encryption process will compute 𝜆, =	𝜈	.𝑀, for each j ranging from 1 to ℓ. The process
then randomly chooses 𝑟!, … , 𝑟2 ∈ 	ℤ$∗ . After that, compute four basic components that are used in composing the
ciphertext,

𝐶3 = 𝑔4 , (1)

𝐶33 =	𝑔
"
#! , (2)

𝐶, =	𝑔56$. ((𝑔788⃗ (,)<(,)𝐻(𝜌(𝑗))=!)%>$, (3)

𝐷!,, =	𝑔
%$
#! , (4)

𝐷-,, =	𝑔
%&!#!

%! . (5)

Finally, compute the ciphertext by using the previously computed components and the content key,

𝐶𝑇# = `𝑐𝑘# . F∏ �̂�(𝑔, 𝑔)?!2
, L4 , 𝐶3, 𝐶33, 𝐶, , 𝐷!,, , 𝐷-,, , 𝜌(𝑗)b (6)

5.2 Authorization and Query
Once the user has been authorized to the system, as one of its rights, he can issue a request to receive a specific piece
of information stored on the untrusted cloud servers. There has to be a token for every user since the data is hosted on
both cloud servers. Then, the user has to issue a query to the (𝑡, 𝑛) Share Generator, including the user's secret key,
attributes, and certificates. The (𝑡, 𝑛) Share Generator will issue k-queries (one for each server) ℛ =
{𝑟!, 𝑟-, … , 𝑟# , … , 𝑟/}for the get management point, where 𝑟# = ℛ𝒾(𝑘, 𝑛, 𝑗) and 𝑗 is randomly chosen by flipping coins.
Every server will reply with one encrypted reaction, the consumer will have an encrypted Response Collection 𝑅𝐶 =
{𝑟𝑐!, 𝑟𝑐-, … , 𝑟𝑐# , … , 𝑟𝑐/}, where 𝑟𝑐# = 𝑅𝐶#(𝑘, 𝑖, 𝑥, 𝑟#). The get management point will respond with all the servers'
response collection, sent to the user requesting access.

5.3 Data Decryption
When the user requesting access receives the response collection 𝑅𝐶, which implicitly contains the access structure
𝒜. Based on the user's secret key 𝑈𝑆𝐾, and the user's set of attributes 𝑈𝑆𝐴. When the 𝑈𝑆𝐴 suits the access structure,
the consumer can get the response 𝑅 collection, which will be utilized for the decryption. In our scheme, the secret
sharing scheme has a variable reconstruction threshold (𝑡).

6. Implementation
We have simulated our proposed scheme using our private cloud environment built based on OpenStack [32]. The
construction of the proposed scheme is mainly based on the initialization of a reasonable collection of virtual instances
with different configurations based on their role in the proposed scheme.

We have three groups of virtual instances:

• Group I: A number of virtual instances are working as untrusted cloud storage servers and database servers.
Those instances are grouped into the same Internet Protocol address scope with the same subnet mask, and
they have excellent storage capabilities;

• Group II: Three instances with medium configuration. Those instances are working as a Share Generator
server, Shamir-Distribution server, and Shamir-Reconstruction server; and

• Group III: Two virtual instances with extensive configuration. Those instances are working as Put
Management point and get management point.

7. Performance Analysis
In this section, we will analyze the performance of our proposed scheme under three distinct situations–overlay
situation, storage situation, and client situation.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

28

7.1 Overlay Situation
For the purpose of our scheme, the Overlay solution is analyzed using as a reference the Swift service. Swift has been
selected due to its popularity, availability as open-source, and technical features that are good representatives of what
is offered by a modern object storage service for the cloud. We consider two main alternatives for realizing our scheme
on Swift1 without any changes to the server. The first option assumes to manage each fragment as a separate object.
The second option uses the ability to access portions of objects and specifically considers Dynamic Large Objects
(DLOs). Our experiments show that this latter option provides significant benefits in performance with respect to
managing fragments as separate objects. DLOs deserve then to be used when available.

Figure 3. The time overhead for executing multiple get requests, according to the size of objects on Swift.

Figure 3 compares the time required for the execution of get requests for different numbers of slices with the
assumption that each slice is related to a specific object size. The lines correspond to distinct values for the number s
of slices (i.e., 1, 4, 16, 64, 256, and 1024). The parameters that drive the performance are the network bandwidth and
the overhead imposed by the management of each request. Forget requests, the overhead introduced by managing one
request for each slice dominates when the resource is small, whereas the increase in object size makes the network
bandwidth the bottleneck. The profile of put requests uploading the complete resource proved identical to the profile
of get requests using a single slice. The execution of put slice requests grows linearly with the size of the slice.

Figure 4. The throughput for a workload of executing multiple get and put slice requests on Swift, according to the
size of objects.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

29

The identification of the best number of slices is not an easy task. It requires considering the profile of the scenario.
We evaluated the behavior of a system on a collection of 1000 objects where, after each put slice request, a sequence
of 50 get requests were executed on objects in the collection, all of the same size. Figure 4 reports the results of the
best number of slices experiments. As objects become larger, the benefits of slicing in the application of policy updates
compensate for the overhead imposed on retrieving the objects. It is to note that the solution's performance that does
not use our scheme corresponds to the line with one fragment. The throughput of the configurations using slices is
orders of magnitude higher already for medium-size objects. The graph also shows that the best number of slices
depends on the resource size. The identification of the value to use requires considering the configuration of the system
and the expected workload.

The customer only creates one get request for the item, separately from the number of items. The object's descriptor
can be prolonged use the representation of every fragment's edition. We have embraced the DLO service provided
by Swift to execute the get and also put slice methods. Since the storage service is based on high capabilities cloud
servers, we do not care about the storage overhead itself. But we are laying more importance on the part related to
replying to the user with the result of a specific request.

We are interested in the get slice request execution time, as shown in Figure 3. We are considering six different slice
sizes (1, 4, 16, 64, 256, and 1024), and the results are the average of 25 trials at the same environmental conditions.
We have found that at a 1 GB size object, the time required to process the request internally is about 92 seconds for
one considered fragment; the time is 1000 seconds for 1024 supposed fragments for the same object size.

Figure 5. The encryption time in milliseconds for encrypting multiple slices of multimedia data according to the
size of objects.

7.2 Storage Situation
In our scheme, the primary storage overhead is induced by the encryption algorithm. At first, the data owner sends the
multimedia data to be stored for the share generator. Then, the shares (slices) are sent to Shamir-Distribution, and
after that for the Put_Management.

Figure 5 introduces the encryption time elapsed at the Share Generator for encrypting multiple slices for different
object sizes. The lines correspond to distinct values for the number s of slices (i.e., 1, 4, 16, 64, 256, and 1024). The
encryption time elapsed for encrypting one request for each slice dominates when the resource is small, whereas the
increase in object size makes the encryption algorithm runs for a long time to encrypt it successfully. In comparison,
when considering 1024 slices for a 1GB multimedia data object, the encryption time is small compared to considering
only one slice for encrypting it. This is due to the fact that encrypting multiple small slices is faster than encrypting
few large objects. It should be mentioned that the encryption time of our scheme is better than the time for the
traditional encryption schemes. It should be noted that the experimental results for that part are an average of 25 trials.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

30

7.3 Client Situation
In our scheme, the user is requested to execute a bit complex decryption process. Compared with the use of the
traditional Attribute Encryption Scheme (AES). Based on our great VCPUs, the decryption stage for a specific slice
of data is executed parallelly. Then, the user can slightly decrypt the received RC in a minimal time compared to the
traditional AES scheme. In our experiments, we have considered four different size categories: 32:127 bits; 128:511
bits; 512:2047 bits; and 2048:8192 bits.

Figure 6. The client-side decryption time in milliseconds for decrypting multiple multimedia data slices according to
the object size.

Figure 6 shows the decryption time at the client-side. It is clear that the decryption time is decaying with decreasing
the object size. Also, when requesting multiple slices, the decryption time decay. This is due to the fact that decrypting
multiple small slices do not cause network congestion. On the other hand, few massive objects cause significant
network overhead and congestion. Thus, from this figure, the most oversized objects can be decrypted very vastly
when considering a vast number of slices for slicing them. It should be noted that the experimental results for that part
are an average of 25 trials.

8. Conclusions
The security and privacy of multimedia data are critical and challenging, especially with the massive amount of
multimedia data and applications. Also, with the enormous need for cloud computing to be the back-end for storing
heterogeneous multimedia data. Moreover, numerous security issues arising when hosting sensitive data on cloud
untrusted servers. Therefore, there must exist an effective and secure scheme for efficiently storing and retrieving the
multimedia data from the untrusted cloud servers without revealing the identity of the portion being retrieved. This
paper discusses securely storing and retrieving the multimedia data from the untrusted cloud servers without revealing
the identity of the portion being retrieved. Accordingly, we have proposed a scheme for efficiently and securely
storing and retrieving the heterogeneous multimedia data from the untrusted cloud servers. This scheme slices the
multimedia data, encrypts them and stores them on the cloud servers. The requested slice of data can only be
downloaded on the client-side without downloading the whole multimedia data object. Then, it can be decrypted if
the user is authorized for the decryption process. Therefore, our scheme guarantees both the storage security and
retrieval of multimedia data. Three distinct situations–overlay situation, storage situation, and client situation are used
to evaluate our proposed scheme and demonstrate its effectiveness and practicality in security modeling for multimedia
storage and retrieval systems.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

31

References

[1] D. Quick and K.-K. R. Choo, "Big forensic data management in heterogeneous distributed systems: Quick
analysis of multimedia forensic data," Softw. Pract. Exper., vol. 47, no. 8, pp. 1095–1109, Aug. 2017.

[2] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K. K. R. Choo, "Fuzzy identity- based data integrity auditing for
reliable cloud storage systems," IEEE Transactions on Dependable and Secure Computing, pp. 1–1, 2017.

[3] Z. Liu, K.-K. R. Choo, and M. Zhao, "Practical-oriented protocols for privacy-preserving outsourced big data
analysis: Challenges and future research directions," Computers & Security, vol. 69, pp. 97 – 113, 2017, security
Data Science and Cyber Threat Management.

[4] B. Thuraisingham, "Security and privacy for multimedia database management systems," Multimedia Tools and
Applications, vol. 33, no. 1, pp. 13–29, Apr 2007.

[5] B. B. Gupta, S. Yamaguchi, and D. P. Agrawal, "Advances in security and privacy of multimedia big data in
mobile and cloud computing," Multimedia Tools and Applications, vol. 77, no. 7, pp. 9203–9208, Apr 2018.

[6] S. Aljawarneh, M. B. Yassein, and W. A. Talafha, "A multithreaded programming approach for multimedia big
data: encryption system," Multimedia Tools and Applications, vol. 77, no. 9, pp. 10 997–11 016, May 2018.

[7] G. R. Blakley, "Safeguarding Cryptographic Keys," in AFIPS, International Workshop on, Managing
Requirements Knowledge, vol. 48, 1979, pp. 313–317.

[8] A. Shamir, "How to Share a Secret," Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.
[9] G. R. Blakley and C. Meadows, Advances in Cryptology, ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2000, vol. 196, no. 0302-9743, ch. Security of Ramp Schemes, pp. 242–268.
[10] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan], "The rise of "big data" on cloud

computing: Review and open research issues," Information Systems, vol. 47, pp. 98 – 115, 2015.
[11] C. Fu, Z. Yang, X. Liu, J. Yang, A. Walid, and L. T. Yang, "Secure tensor decomposition for heterogeneous

multimedia data in cloud computing," IEEE Transactions on Computational Social Systems, vol. 7, no. 1, pp.
247–260, 2020.

[12] B. Martini, P. Mori, F. Marino, A. Saracino, A. Lunardelli, A. L. Marra, F. Martinelli, and P. Castoldi, "Pushing
forward security in network slicing by leveraging continuous usage control," IEEE Communications Magazine,
vol. 58, no. 7, pp. 65–71, 2020.

[13] L. Chen, "Analysis of synchronized storage method for multimedia key areas based on machine learning,"
Multimedia Tools and Applications, May 2019.

[14] Y. Xiao, L. Zhang, and L. Hou, "Autonomous multimedia cluster computing based on cooperative cognition data
behavior measurement under multi-cloud computing," Multimedia Tools and Applications, vol. 78, no. 7, pp.
8783–8797, Apr 2019.

[15] Z. Cheng, X. Chang, L. Zhu, R. C. Kanjirathinkal, and M. Kankanhalli, "Mmalfm: Explainable recommendation
by leveraging reviews and images," ACM Trans. Inf. Syst., vol. 37, no. 2, pp. 16:1–16:28, Jan. 2019.

[16] K. Riad and J. Cheng, "Adaptive XACML access policies for heterogeneous distributed IoT environments,"
Information Sciences, vol. 548, pp. 135-152, 2021.

[17] J. Xiong, Y. Zhang, X. Li, M. Lin, Z. Yao, and G. Liu, "Rse-pow: a role symmetric encryption pow scheme
with authorized deduplication for multimedia data," Mobile Networks and Applications, vol. 23, no. 3, pp. 650–
663, Jun 2018.

[18] K. Riad and L. Ke, "Roughdroid: Operative scheme for functional android malware detection," Wireless
Communications and Mobile Computing, vol. 2018, pp. 1–10, 2018.

[19] Y. Yang, X. Zheng, V. Chang, S. Ye, and C. Tang, "Lattice assumption based fuzzy information retrieval scheme
support multi-user for secure multimedia cloud," Multimedia Tools and Applications, vol. 77, no. 8, pp. 9927–
9941, Apr 2018.

[20] K. Riad and Z. Yan, "Multi-Factor Synthesis Decision-Making for Trust-Based Access Control on Cloud,"
International Journal of Cooperative Information Systems, vol. 26, no. 4, pp. 1–33, 2017.

[21] Q. Zhang, L. T. Yang, and Z. Chen, "Privacy preserving deep computation model on cloud for big data feature
learning," IEEE Transactions on Computers, vol. 65, no. 5, pp. 1351–1362, May 2016.

[22] Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, and M. Kankanhalli, "A3ncf: An adaptive aspect attention model
for rating prediction," in Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organization, 7 2018, pp. 3748–
3754.

[23] K. Riad, T. Huang, and L. Ke, "A dynamic and hierarchical access control for IoT in multi-authority cloud
storage," Journal of Network and Computer Applications, vol. 160, pp. 102633, 2020.

[24] K. Guo, W. Pan, M. Lu, X. Zhou, and J. Ma, "An effective and economical architecture for semantic-based

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 5, No. 1, PP. 20-32, 2021

DOI: 10.5281/zenodo.5226865
Received: March 19, 2021 Accepted: June 12, 2021

32

heterogeneous multimedia big data retrieval," Journal of Systems and Software, vol. 102, pp. 207 – 216, 2015.
[25] L. Xie, L. Zhu, and G. Chen, "Unsupervised multi-graph cross-modal hashing for large-scale multimedia

retrieval," Multimedia Tools and Applications, vol. 75, no. 15, pp. 9185–9204, Aug 2016.
[26] K. Riad and L. Ke, "Secure storage and retrieval of IoT data based on private information retrieval," Wireless

Communications and Mobile Computing, vol. 2018, pp. 1–10, 2018.
[27] K. Guo, Z. Liang, Y. Tang, and T. Chi, "Sor: An optimized semantic ontology retrieval algorithm for

heterogeneous multimedia big data," Journal of Computational Science, vol. 28, pp. 455 – 465, 2018.
[28] Z. Gao, H. Zhang, G. Xu, Y. Xue, and A. Hauptmann, "Multi-view discriminative and structured dictionary

learning with group sparsity for human action recognition," Signal Process., vol. 112, no. C, pp. 83–97, Jul. 2015.
[29] K. Li, G.-J. Qi, and K. A. Hua, "Learning label preserving binary codes for multimedia retrieval: A general

approach," ACM Trans. Multimedia Comput. Commun. Appl., vol. 14, no. 1, pp. 2:1–2:23, Dec. 2017.
[30] J. Yan, H. Zhang, J. Sun, Q. Wang, P. Guo, L. Meng, W. Wan, and X. Dong, "Joint graph regularization-based

modality-dependent cross-media retrieval," Multimedia Tools and Applications, vol. 77, no. 3, pp. 3009–3027,
Feb 2018.

[31] C.-C. Yang, T.-Y. Chang, and M.-S. Hwang, "A (t,n) multi-secret sharing scheme," Applied Mathematics and
Computation, vol. 151, no. 2, pp. 483– 490, 2004.

[32] OpenStack, "http://www.openstack.org/."
[33] H. Krawczyk, Advances in Cryptology, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2001, vol. 773, no. 0302-9743, ch. Secret Sharing Made Short, pp. 136–146.

