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Abstract  

This paper introduces for the first time the concept of n-cyclic refined neutrosophic group as a direct application of 

the concept of n-cyclic refined neutrosophic set. Also, it discusses some of its elementary properties such as AH-

subgroups, kernels, and direct products. 
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1.Introduction 
Neutrosophy is a philosophical concept founded by Smarandache to generalize the fuzzy logic [1,32] . Neutrosophic 

sets were very applicative in many areas of science such as topology [2,27,60,61,63], decision making [21,35], 

applied mathematics [3,4,20,25,28,57,64], and pure mathematics [9,10,19,39,43,44,47,50,51,52]. 

Neutrosophic sets were used in the study of algebraic structures such as modules [6], rings [12], groups [13], and 

matrices [6,53,62]. In the literature, we find three interesting generalizations of neutrosophic sets, where refined 

neutrosophic sets [13] n-refined neutrosophic sets [15,50], and n-cyclic refined neutrosophic sets [31]. These kinds 

lead us to many interesting generalizations of classical algebraic structures such as n-refined neutrosophic modules 

[5], n-refined spaces and matrices [8,46,54], refined neutrosophic ring [23,48,49], and n-cyclic refined neutrosophic 

modules [31]. 

In this work, we use the concept of n-cyclic refined neutrosophic set to defined n-cyclic refined neutrosophic groups. 

These groups will be studied carefully, and many elementary properties will be discussed through this paper, 

especially AH-subgroups, kernels, and homomorphisms. 

2. Preliminaries 

Definition 2.1: [31] 

 Let (R,+,×) be a ring and ��; 1 ≤ � ≤ � be n indeterminacies. We define ��(I)={�� + ��� + ⋯ + ���� ;  �� ∈ �} to 

be n-cyclic refined neutrosophic ring. 

Operations on ��(I) are defined as: 

� ���� + � ���� = �(�� + ��)�� ,

�

���

� ���� × � ���� = � ��� × ������� =

�

�,���

�

���

�

���

�

���

�

���

� ��� × ����(��� ����)

�

�,���

  

Where × is the multiplication on the ring R. 
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It is obvious that ��(I) is a ring in the algebraic ordinary concept.  

Definition 2.2: [31] 

Let ��(I) be an n-cyclic refined neutrosophic ring, it is called commutative if �� = �� for all x , y ∈ ��(I). If there 

is 1∈ ��(I) such that 1. � =  �. 1 = �, then it is called an n-cyclic refined neutrosophic ring with unity. 

Definition 2.3: [31] 

Let ��(I) be a commutative n-cyclic refined neutrosophic ring and �: ��(I) → ��(I) is a function defined as �(�) =

∑ �����
���  such that �� ∈ ��(I), we call P an n-cyclic refined neutrosophic polynomial on ��(I). 

We denote by ��(I)[x] to be the ring of n-cyclic refined neutrosophic polynomials over ��(I). 

Since ��(I) is a classical ring, then ��(I)[x] is a classical ring. 

Definition 2.4 : [31] 

Let (M,+,.) be a module over the ring R, we say that ��(�) = � + ��� + ⋯ + ��� = {�� + ���� + ⋯ + ����; �� ∈

�} is a weak n-cyclic refined neutrosophic module over the ring R. Elements of ��(�) are called n-cyclic refined 

neutrosophic vectors, elements of R are called scalars. 

If we take scalars from the n- cyclic refined neutrosophic ring ��(�), we say that ��(�) is a strong n-cyclic refined 

neutrosophic module over the n-cyclic refined neutrosophic ring ��(�). Elements of ��(�) are called n-refined 

neutrosophic scalars. 

Remark 2.5: [31] 

Addition on ��(�) is defined as: 

∑ ����
�
��� + ∑ ����

�
��� = ∑ (�� + ��)��

�
��� .  

Multiplication by a scalar � ∈ � is defined as: 

�. ∑ ����
�
��� = ∑ (�. ��)��

�
��� . 

Multiplication by an n-cyclic refined neutrosophic scalar � = ∑ ����
�
��� ∈ ��(�) is defined as: 

∑ ����
�
���  . ∑ ����

�
��� = ∑ (��. ��)����

�
��� . 

Where a� ∈ M, m� ∈ R, I�I� = I(��� ��� �). 

3. Main Concepts and discussion 

Definition 3.1: 

Let I be the neutrosophic element, which refers to indeterminacy, we define n-cyclic refining system of I by the set 

L={�� = �, ��, … , ����}, where �� ≠ �� ��� ��� � ≠ � ��� �, � < �. 

We define a binary operation on L as follows: 

��. �� = ����(����). It is clear that L has a structure of the subset (��/{0}, +), where �� is the additive group of 

integers modulo n. 

HP
Typewriter
Received:January 10, 2021, Accepted: May 05, 2021



 International Journal of Neutrosophic Science (IJNS)                                             Vol. 15, No. 1,  PP. 09-19, 2021 

 

DOI: 10.5281/zenodo.4924483 
 

 11

Definition 3.2:  

Let (G,*) be a group, and I is the neutrosophic element with property �� = � ; � ≥ 2 , with 

 �� ≠ �� ��� ��� � ≠ � ��� �, � < � . We call M(G)=� ∪ �� ∪ ��� ∪ … ∪ �����  an n-cyclic refined neutrosophic 

group.  

It is easy to see that 2-cyclic refined neutrosophic group is the classical neutrosophic group. 

Remark 3.3: 

The sets  ���   are groups under the binary operation (x��)(y��)=(xy��) ; � < � with identity �� and each one of  

them must be isomorphic to G. 

Definition 3.4: 

Let M(G) be an n-cyclic refined neutrosophic group, H be a subset of M(G). We call H an AH-subgroup if H=�� ∪
��� ∪ ���� ∪ … ∪ ��������,where �� is a subgroup of G for all i. 

We call H an AHS-subgroup if �� = �� = ⋯ = ����. 

We call H an AH-normal if �� is normal subgroup of G for all i. 

We call H an AHS-normal if it is AHS-subgroup and AH-normal. 

Definition 3.5 :  

Let M(G) , M(H) be two n , m-cyclic refined neutrosophic groups respectively, �: �(�) �(�) be a map , we say 

that � is an AH- homomorphism if  it is a homomrphism between G , H i.e. �(��) = �(�)�(�)∀ �, � ∈

� ��� �(��) = (�′)� such �′ is the neutrosophic element of H. 

We define �� − ���(�)  = ����� ∪ ������ ∪ … ∪ ��������� , we regard that �� − ���(�) is an AHS-normal 

subgroup of M(G)  

We say that � is an isomorphism if it is a correspondence one-to-one homomorphism. 

If H = �� ∪ ��� ∪ … ∪ �������� ��� � = �� ∪ ��� ∪ … ∪ �������� are two AH-subgroups of M(G). We say that 

they are isomorphic if �� ≅ �� for all i . 

Definition 3.6 : 

Let H , K be two AH-subgroups of M(G). We define  

�� = ���� ∪ ������ ∪ … ∪ ������������.  

Definition 3.7 : 

Let M(G) be an n-cyclic refined neutrosophic group, � = �� ∪ ��� ∪ ���� ∪ … ∪ �������� be an AH-normal 

subgroup of M(G). We define the corresponding AH-factor as M(G)/H = (� ��⁄ ) ∪ (� ��⁄ )� ∪ … ∪ (� ����⁄ )����. 

Definition 3.8 : 

Let M(G) be an n-cyclic refined neutrosophic group. We define the AH-center of M(G) by 
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�(�(�)) = �(�) ∪ �(�)� ∪ … ∪ �(�)����.  

It is easy to see that �(�(�)) is an AHS-normal subgroup of M(G). 

Definition 3.9 : 

Let M(G) be an n-cyclic refined neutrosophic group. We say that M(G) is abelian if G is abelian, i.e. 

M(G)=Z(M(G)). 

M(G) is said to be cyclic if G is cyclic. 

Theorem 3.10 : 

 Let M(G) be an n-cyclic refined neutrosophic group, then  

(a) If H is an AH-normal subgroup and M(G) is abelian, then M(G)/H is abelian. 

(b) If M(G) is finite and H is an AHS-subgroup, then O(H) divides O(M(G))= n O(G). 

(c) If H is an AH-normal subgroup and M(G) is cyclic then M(G)/H is cyclic. 

Proof: 

(a) Since M(G)/H = (� ��⁄ ) ∪ (� ��⁄ )� ∪ … ∪ (� ����⁄ )���� and � ��⁄  is abelian for all i, then M(G)/H is abelian. 

(b) We have that O(H)= n O(��) and O(��) divides the order of G then O(H) divides O(M(G))= n O(G). 

(c) Since � ��⁄  is cyclic for all i then M(G)/H is cyclic. 

Theorem 3.11 : 

Let M(G) be an n-cyclic refined neutrosophic group and H , K be two AH-subgroups, then  

(a) � ∩ � is an AH-subgroup. 

(�) If H , K are AHS-subgroups, then � ∩ � is an AHS-subgroup. 

(c) If H , K are AH-normal subgroups, then � ∩ � and HK are AH-normal subgroups. 

(d) If H, K are AHS-normal subgroups, then � ∩ � and HK are AHS-normal subgroups. 

Proof : Suppose that H = �� ∪ ��� ∪ … ∪ �������� ��� � = �� ∪ ��� ∪ … ∪ �������� then � ∩ � = (�� ∩ ��) ∪

(�� ∩ ��)� ∪ … ∪ (���� ∩ ����)���� by this argument we can easily find that the proof  holds. 

Theorem 3.12 : 

Let  M(G) , M(H) be two n , m-cyclic refined neutrosophic groups respectively, and �: �(�) �(�) be a 

homomorphism, then  

(a) � ≥ �.  

(b) If K is an AH-subgroup of M(G) then f(K) is an AH-subgroup of M(H). 

(c) If K is an AHS-subgroup of M(G) then f(K) is an AHS-subgroup of M(H). 
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(d) If K is an AH-normal subgroup of M(G) then f(K) is an AH-normal subgroup of f(M(G)). 

(e) If K is an AHS-normal subgroup of M(G) then f(K) is an AHS-normal subgroup of f(M(G)). 

(f) M(G)/Kerf  f (M(G)). 

Proof : 

(a) Suppose that � < � then �′ = �(�) = �(��) = (�′)� and this is a contradiction thus � ≥ �. 

(b) Suppose that � = �� ∪ ��� ∪ … ∪ ��������, then �(�) = �(��) ∪ �(��)� ∪ … ∪ �(����)���� with subgroups 

f(��) ��� ��� � of M(H), so that �(�) is an AH-subgroup of �(�). 

(c) It is obvious that if �� = ��, �ℎ�� �(��) ≅ �(��), thus  �(�) is an AHS-subgroup of M(H). 

(d) , (e) hold directly from (b) and (c) and from the fact that if  �� is normal, then �(��) is normal. 

(f) From the definition, we find �(�) ����⁄ = (� �����⁄ ) ∪ (� �����⁄ )� ∪ … ∪ (� �����⁄ )����; but � �����⁄ ≅
�(�), thus �(�) ����⁄ ≅ �(�) ∪ �(�)� ∪ … ∪ �(�)���� = �(�(�)).  

Theorem 3.13 : 

Let M(G) be an n-cyclic refined neutrosophic group and H , K be two AH-normal subgroups with K≤ �, then 

(�(�) �⁄ ) (� �⁄ )⁄ ≅ �(�) �⁄ . 

Proof : 

Suppose that = �� ∪ ��� ∪ … ∪ �������� ��� � = �� ∪ ��� ∪ … ∪ �������� with K≤ �, then 

(�(�) �⁄ ) (� �⁄ )⁄ =    ((� ��⁄ ) ∪ … ∪ (� ����⁄ )����) ((�� ��⁄ ) ∪ … ∪ (���� ����⁄ )����)⁄  ≅

� �0⁄ (�0 �0⁄ )⁄ ∪ … ∪ (� ��−1⁄ ) (��−1 ��−1⁄⁄ )��−1 ≅ � �0⁄ ∪ (� �1⁄ )� ∪ … ∪ (� ��−1⁄ )��−1 = �(�) �⁄ . 

Theorem 3.14 : 

Let M(G) be an n-cyclic refined neutrosophic group, and H is an AH-normal subgroup, then for each AH-subgroup 

T of M(G)/H there is an AH-subgroup of M(G) contains H. 

Proof : It can be proved as the classical case. 

Definition 3.15 : 

Let  M(G) , M(H) be two n-cyclic refined neutrosophic groups,  

we define �(�) × �(�) = (� × �) ∪ (� × �)��′ ∪ … ∪ (� × �)��(� ′)� with (��′)� = ��(�′)� for all k , it is clear 

that �(�) × �(�) is an n-generalized neutrosophic group with neutrosophic element ��′. 

Theorem 3.16 : 

Let  M(G) , M(H) be two n-cyclic refined neutrosophic groups, then  

(a) If M(G) , M(H) are abelian then �(�) × �(�) is abelian. 

(b) If T,S are two AH-subgroups of M(G) , M(H) respectively, then � × � is an AH-subgroup of �(�) × �(�). 
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(c)  If T,S are two AH-normal subgroups of M(G) , M(H) respectively, then � × � is an AH-normal subgroup of 

�(�) × �(�). 

(d) If T,S are two AHS-subgroups of M(G) , M(H) respectively, then � × � is an AHS-subgroup of �(�) × �(�). 

(e) If T,S are two AHS-normal subgroups of M(G) , M(H) respectively then � × � is an AHS-normal subgroup of 

�(�) × �(�). 

Proof : 

(a) It is clear since � × � is abelian. 

(b) Assume that � =  �� ∪ … ∪ �������� and � = �� ∪ … ∪ ����(�′)���, then 

 � × � = (�� × ��) ∪ … ∪ (���� × ����)(��′)��� , we can regard that �� × �� is a subgroup of � × �, so � × � is an 

AH-subgroup. 

(c) It holds directly from (b). 

(d) If �� ≅ �� ��� �� ≅ �� then �� × �� ≅ �� × �� and then � × � is an AHS-subgroup. 

(e) It holds directly from (d) and (c).    

Theorem 3.17 : 

Let  M(G) , M(H) be two n-cyclic refined neutrosophic groups and T,S be two AH-normal subgroups of M(G) , 

M(H) respectively, then  

�(�) × �(�) � × � ≅ �(�) �⁄ × �(�) �⁄⁄ . 

Proof : 

Suppose that � =  �� ∪ … ∪ �������� and � = �� ∪ … ∪ ����(�′)���, then 

 �(�) �⁄ × �(�) �⁄ =  (� ��⁄ × � ��⁄ ) ∪ (� �� × � ��⁄⁄ )��′ ∪ … ∪ (� ����⁄  × � ����⁄ )(��′)���  

≅ G × H T� × S�⁄ × … × (� × � ���� × ����)(��′)���⁄ = �(�) × �(�) � × �⁄ . 

Example 3.18: 

Consider the additive group (�∗, . ) and the integer � = 3. The corresponding 3-cyclic refined neutrosophic group is 

�(�) = {�, ��, ���; �, �, � ∈ �∗}. 

1) We know that (�∗,.) is a subgroup of  (�∗, . ), hence L=�∗ ∪ �∗� ∪ �∗�� ={�, ��, ���; �, �, � ∈ �∗} is a 3-cyclic 

refined AHS-subgroup. 

2) The corresponding AH-factor is 
�(�)

�
� = �∗

�∗� ∪ �∗

�∗� � ∪ �∗

�∗� ��. 

Example 3.19: 
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Consider the following two groups � = (�, +), � = (2�, +), and the integer � = 4, the corresponding 4-cyclic 

refined neutrosophic groups are �(�) = {�, ��, ���, ���; �, �, �, � ∈ �}, �(�) =

{2�, 2��, 2���, 2���; �, �, �, � ∈ �}, 

1) �: � → �; �(�) = 4� �� � ����� ℎ�������ℎ���. ���(�) = {0}. 

2) The corresponding AH-homomorphism is �: �(�) → �(�); �(�) = 4�, ��� �(���) = 4���; 1 ≤ � ≤ 3. 

3) The corresponding AH-kernel is �� − ���(�) = ���(�) ∪ ���(�)� ∪ ���(�)�� ∪ ���(�)�� = {0,0 + �, 0 +

��, 0 + ��} 

Conclusion 

In this paper, we have defined for the first time the concept of n-cyclic refined neutrosophic group as a new 

application of n-cyclic refined neutrosophic sets. We have discussed some of their elementary properties such as 

AH-subgroups, AH-kernels and direct products. 

As a future research directions, we aim to study the n-cyclic refined neutrosophic semi groups and loops. 

Funding: “This research received no external funding”  
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