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Abstract  

  A single valued neutrsophic set is one of the most successful extensions of the classical set, fuzzy set, intuitionistic 
fuzzy set, Pythagorean fuzzy set and q-rung orthopair fuzzy set due to the fact that it can handle uncertain data in 
more wider way. In this paper, we introduce some new generalized weighted similarity measures based on the 
exponential functions defined on truth-membership function, indeterminacy membership function and falsity 
membership function of a single valued neutrosophic set to study the independent influences of the truth-
membership function, indeterminacy membership function and falsity membership function. The salient features of 
these proposed similarity measures are studied in detail. Based on the proposed similarity measures, we propose a 
multi attribute decision making method. To show the feasibility and effectiveness of the proposed method, an 
investment decision making problem is demonstrated. 

Keywords: Single valued neutrosophic set, weighted exponential similarity measures, decision making. 

 

1. Introduction  

         In our daily life, we come across various types of multi-attribute decision making problems with non-crisp/ 
uncertain data. Fuzzy set theory is one such extremely useful tool that helps us to deal with non-crisp data. In 1965, 
Lotfi A. Zadeh [1] first published the famous research paper on fuzzy sets that originated due to mainly the inclusion 
of vague human assessments in computing problems and it can deal with uncertainty, vagueness, partially trueness, 
impreciseness, Sharpless boundaries etc. Basically, the theory of fuzzy set is founded on the concept of partial 
belongings of an element in a set in order to process inexact information. Later on, fuzzy sets have been generalized 
to intuitionistic fuzzy sets [2] by adding a non-membership function by Atanassov in 1986 in order to deal with 
problems that possess incomplete information.  In case of fuzzy sets or intuitionistic fuzzy sets, it is known that the 
membership (or non-membership) value of an element in a set takes a unique value in the closed interval [0,1]. 
However, the application range of intuitionistic fuzzy set is narrow in the sense that it has the constraint that sum of 
membership degree and non-membership degree of an element cannot exceed ‘1’. But, in complex decision‐making 
problems, decision makers/experts may choose the preferences in such a way that the above condition gets violated. 
For instance, if an expert gives his preference with membership degree 0.8 and non-membership degree 0.7, then 
clearly their sum is 1.5, which is greater than 1. Therefore, intuitionistic fuzzy sets are not able to deal with this 
situation. To solve this problem, Yager [3, 4] introduced the non-standard fuzzy set named as Pythagorean fuzzy 
sets with membership degree ζ and non-membership degree ϑ with the condition ζ2 + ϑ2 ≤ 1. Obviously, the 
Pythagorean fuzzy sets accommodate more uncertainties than the intuitionistic fuzzy sets. Yager [5] defined q-rung 
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orthopair fuzzy sets (q-ROFSs) by enlarging the scope of Pythagorean fuzzy sets. The q-rung orthopair fuzzy sets 
allows the result of the qth power of the membership grade plus the qth power of the non-membership grade to be 
limited in interval [0,1]. If q=1, the q-rung orthopair fuzzy set transforms into the intuitionistic fuzzy set; if q=2, the 
q-rung orthopair fuzzy set transforms into the Pythagorean fuzzy set, which means that the q-rung orthopair fuzzy 
sets are extensions of intuitionistic fuzzy sets and Pythagorean fuzzy sets.  
          In 1999, Smarandache [6] introduced the notion neutrsophic set as a generalization of the classical set, fuzzy 
set, intuitionistic fuzzy set, Pythagorean fuzzy set and q-rung orthopair fuzzy set. The characterization of this 
neutrosophic set is explicitly done by truth-membership function, indeterminacy membership function and falsity 
membership function. The concept of single valued neutrosophic set was developed by Wang et al. [7] as an 
extension of fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued 
spherical neutrosophic sets [8], n-hyperspherical neutrosophic sets [8]. The possible applications of neutrosophic 
sets and single valued neutrosophic sets on image segmentation have been studied in Gou and Cheng [9], Gou and 
Sensur [10]. Also, we find their probable infliction on clustering analysis in Karaaslan [11] and on medical diagnosis 
problems in Ansari et al. [12] respectively. Furthermore, the subject of the neutrosophic set theory has been 
practiced in Wang et al. [13], Gou et al. [14], Ye [15], Sun et al. [16], Ye [17, 18, 19] and Abdel Basset et al. [20, 
21]. Some recent studies on this area can be found in [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].        
          Similarity measure plays a significant role for measuring the uncertain information. The fuzzy similarity 
measure is a measure that depicts the closeness among fuzzy sets. Many researchers have conducted extensive 
studies on similarity measures between fuzzy sets. Zwick et al. [35] reviewed and compared several similarity 
measures between fuzzy sets based on both geometric and set-theoretic ways. Pappis and Karacapilidis [36] 
introduced three similarity measures between fuzzy sets. Some more works on similarity measures in fuzzy 
environment can be found in [37], [38], [39], [40], [41]. Apart from these, some similarity measures in intuitionistic 
fuzzy environment are summarized in [42, 43, 44, 45, 46, 47, 48]. Similarity measures of single valued neutrosophic 
sets were introduced by Majumdar and Samanta [49]. Some authors [50, 51, 52] studied the concept of similarity 
measure between the two single valued neutrosophic sets which are useful to identify whether two sets are identical 
or atleast to what degree they are identical. 
          In case of the existing similarity measures [49, 50, 51, 52] of single valued neutrosophic sets, the independent 
influences of the truth-membership function, indeterminacy membership function and falsity membership function 
are completely ignored. To extend the existing similarity measures, in this paper, we introduce some new 
generalized weighted similarity measures based on the exponential functions defined on truth-membership function, 
indeterminacy membership function and falsity membership function. We call them “Generalized weighted 
exponential similarity measures” of single valued neutrosophic sets. 
        The rest of the paper is arranged as follows:  
Some relevant definitions and results are given in Section 2. In Section 3, different types of generalized weighted 
exponential similarity measures between two single valued neutrosophic sets are introduced. The salient features of 
these proposed similarity measures are studied in detail. In Section 4, we propose a multi attribute decision making 
method. To show the feasibility and effectiveness of the proposed method, an investment decision making problem 
is considered. Section 5 is devoted to comparative study. Section 6 concludes the paper. 

2. Preliminaries    

    In this section, first we recall some basic notions that are relevant to our study. 

2.1 Definition: [7] A single-valued neutrosophic set (SVNS) V  on the universe set � is given by  

{ , ( ), ( ), ( ) : }x x x x x U        

where the functions , , : [0,1]U      satisfy the condition 0 ( ) ( ) ( ) 3x x x      for every � ∈ �. The 

functions  ( ), ( ), ( )x x x    define the degree of truth-membership,  indeterminacy-membership and falsity-

membership,  respectively of � ∈ � .    

2.2 Definition: [7] Suppose  and    be two single-valued neutrosophic sets on � and are given by  

{ , ( ), ( ), ( ) : }x x x x x U        and { , ( ), ( ), ( ) : }x x x x x U          . Then 

(i) if and only if ( ) ( ), ( ) ( ), ( ) ( ) .x x x x x x x U                 
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(ii) { , ( ),1 ( ), ( ) : }c x x x x x U         

(iii) ={< , max( ( ), ( )), min( ( ), ( )), min( ( ), ( )) : }.x x x x x x x x U              

(iv) ={< , min( ( ), ( )), max( ( ), ( )), max( ( ), ( )) : }.x x x x x x x x U               

2.3 Definition: [49] Let USVNS  be the collection of all single-valued neutrosophic sets on �. Suppose  ,
USVNS    and are given by: { , ( ), ( ), ( ) : }x x x x x U        and 

{ , ( ), ( ), ( ) : }x x x x x U          . Then, a similarity measure between   and    is a function defined as 

: [0,1]US SVNS   which satisfies the following properties: 

(I) 0 ( , ) 1S      

(II) ( , ) ( , )S S      

(III) ( , ) 1S     if and only if     

(IV) ( , ) min{ ( , ), ( , )}S S S                  

2.3 Definition: [49] Let USVNS  be the collection of all single-valued neutrosophic sets on �. Suppose  ,

USVNS    and are given by: { , ( ), ( ), ( ) : }x x x x x U        and { , ( ), ( ), ( ) : }x x x x x U          . 

Then, a weighted similarity measure between   and    is defined as: 

 

    

2

2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( )
( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

x
x

x
x

x x x x x x

S x U
x x x x x x

      

 
      

   

  
      




 

3. Exponential similarity measures of SVNSs: 

      This sections presents various types of generalized weighted exponential similarity measures of  SVNSs. The 

basic properties of these newly defined similarity measures are discussed. 

3.1 Definition:  Let 
1 1 11 { , ( ), ( ), ( ) : }x x x x x U          and 

2 2 22 { , ( ), ( ), ( )x x x x         

: }x U  be two   SVNSs over  .U  For 1k  and x U , let us  define three  exponential  functions: 

1 2 1 2 1 2
( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2( , ) , ( , ) , ( , ) .
k k k k k kx x x x x x

x x xS e S e S e
                 

          

3.2 Theorem:  Let 
1 1 11 { , ( ), ( ), ( ) : }x x x x x U          and 

2 2 22 { , ( ), ( ), ( )x x x x         

: }x U  be two   SVNSs over  .U  Then  

        (a) 1 2 1 2 1 20 ( , ), ( , ), ( , ) 1x x xS S S           

        (b) 1 2 2 1 1 2 2 1( , ) ( , ), ( , ) ( , )x x x xS S S S             and 1 2 2 1( , ) ( , ),x xS S       

        (c) 1 2 1 2 1 2( , ) ( , ) ( , ) 1x x xS S S            if and only if  1 2    

        (d) If  1 2 3 ,      then 1 3 1 2 2 3 1 3 1 2( , ) min { ( , ), ( , )}, ( , ) min { ( , ),x x x x xS S S S S                 

             

2 3 1 3 1 2 2 3( , )}, ( , ) min { ( , ), ( , )}.x x x xS S S S             

Proof: (a)- (c) straight  forward. 

(d)  As 1 2 3     , we  have, 
1 2 3 1 2 3 1

0 ( ) ( ) ( ) 1,1 ( ) ( ) ( ) 0,1 ( )x x x x x x x                      
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2 3
( ) ( ) 0.x x     This  gives, 

1 2 3 1 2 3 1 2
0 ( ) ( ) ( ) 1,1 ( ) ( ) ( ) 0,1 ( ) ( ),k k k k k k k kx x x x x x x x                       

3
( ) 0.k x    

Now
1 3 1 2 2 3
( ) ( ) ( ) ( ) ( ) ( )k k k k k kx x x x x x                    

                                             
1 2 2 3
( ) ( ) ( ) ( )k k k kx x x x           

1 3 1 2 2 3

1 3 2 31 2
( ) ( ) ( ) ( )( ) ( )

1 3 1 2 2 3 1 2 2 3

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , ) min{ ( , ), ( , )}

k k k kk k

k k k k k k

x x x xx x

x x x x x

x x x x x x

e e e

S S S S S

    

    

     

    

     

    

       

  

             

 

Similarly, 1 3( , )xS     1 2 2 3 1 3 1 2 2 3min { ( , ), ( , )}, ( , ) min { ( , ), ( , )}.x x x x xS S S S S                

     Next, we define the generalized weighted exponential similarities measures for SVNSs using the exponential 

functions defined in definition 3.1. 

3.3 Definition:  Let 
1 1 11 { , ( ), ( ), ( ) : }x x x x x U          and 

2 2 22 { , ( ), ( ), ( )x x x x        : }x U  be 

two   SVNSs over  .U  Also let 0x  denotes the weight of the element x U  such that 1x
x

   .Then we define 

the generalized weighted exponential similarity measure  between  the SVNSs  1 and 2  as: 

       1 2 1 2 1 2 1 2, , , ,k
x x x x

x

S S S S  
              

3.4 Theorem:  Let 
1 1 11 { , ( ), ( ), ( ) : }x x x x x U          and 

2 2 22 { , ( ), ( ), ( )x x x x        : }x U  

be two   SVNSs over  .U  Then  

        (a)  1 20 , 1kS     

        (b)     1 2 2 1, ,k kS S       

        (c)  1 2, 1kS     if and only if  1 2    

        (d) If  1 2 3 ,      then    1 3 1 2 2 3, min { , , ( , )}.k k kS S S          

Proof: (a)-(c) straight  forward. 

(d) For the SVNSs 1 2 3, ,    satisfying 1 2 3 ,      we observe from theorem 3.2 that, 

1 3 1 2 2 3 1 3 1 2 2 3( , ) min { ( , ), ( , )}, ( , ) min { ( , ), ( , )},x x x x x xS S S S S S                   and 1 3( , )xS   

1 2 2 3min{ ( , ), ( , )}x xS S     .x U   

Using these, we get from definition 3.3, 

 

    

1 3

1 2 2 3 1 2 2 3 1 2 2 3

1 2 1 2 1 2 2 3 2 3 2 3

1 2 2 3

,

min { ( , ), ( , )} min { ( , ), ( , )} min{ ( , ), ( , )}

min ( , ) ( , ) ( , ), ( , ) ( , ) ( , )

min , , ,

k

x x x x x x x
x

x x x x x x x x
x x

k k

S

S S S S S S

S S S S S S

S S



     

     

 



 

 

               

 
                   

 

    



 
 

Next we define the generalized weighted average exponential similarity measure of SVNSs. 

3.5 Definition:  Let 
1 1 11 { , ( ), ( ), ( ) : }x x x x x U          and 

2 2 22 { , ( ), ( ), ( )x x x x         
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: }x U  be two   SVNSs over  .U  Then the generalized weighted average exponential similarity measure between 

1
 
and 2  is defined as: 

  1 2 1 2 1 2
1 2

( , ) ( , ) ( , )
,

3
k x x x

A x
x

S S S
S

  

 
        

     
 

  

where 0x   denotes  weight of x U   such that 1.x
x

   

3.6 Theorem: Let 
1 1 11 { , ( ), ( ), ( ) : }x x x x x U          and 

2 2 22 { , ( ), ( ), ( )x x x x        : }x U  

be two   SVNSs over  .U  Then  

        (a)  1 20 , 1k
A S     

        (b)     1 2 2 1, ,k k
A AS S       

        (c)  1 2, 1k
A S     if and only if  1 2    

        (d) If  1 2 3 ,      then    1 3 1 2 2 3, min { , , ( , )}.k k k
A A AS S S          

Proof: (a)-(c) straight forward. 

(d) For the SVNSs 1 2 3, ,    satisfying 1 2 3 ,      we observe from theorem 3.2 that, 

1 3 1 2 2 3 1 3 1 2 2 3( , ) min { ( , ), ( , )}, ( , ) min { ( , ), ( , )},x x x x x xS S S S S S                   and 1 3( , )xS   

1 2 2 3min{ ( , ), ( , )}x xS S     .x U   

Using these, we get from definition 3.5, 

 1 3

1 3 1 3 1 3

1 2 2 3 1 2 2 3

1 2 2 3

1 2 1 2 1 2

,

( , ) ( , ) ( , )

3

1
min { ( , ), ( , )} min { ( , ), ( , )}

3

min{ ( , ), ( , )}

( , ) ( , ) ( , )
min ,

3

k
A

x x x
x

x

x x x x x x
x x

x x x
x

x x x
x

x

S

S S S

S S S S

S S

S S S



  

   

 
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

 





 

        
   

 


            




     



       
 



 



    
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( , ) ( , ) ( , )

3

min , , ,

x x x
x

x

k k
A A

S S S

S S

  

 


        

 
 

    

 

 
4. Multi attribute decision making: 

    Let  1 2 3, , ,......, mA A A A A   be a set of m  alternatives and  1 2 3, , ,......, nC C C C C  be a sets  of  n  attributes. 

Suppose j  is the  weight of  the attribute jC  with 0j  and 
1

1.
n

j
j




   These alternatives  are  evaluated   by an 

expert  and  evaluation values are presented in terms  of SVNSs  , ,ij ij ij ij      such that 

, , 0 and 3ij ij ij ij ij ij            are satisfied for each i, j. 

    To determine the best alternatives, the following steps are followed based on the proposed similarity measures: 

Step-1:  Determine the weight of each criterion. 
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The weight vector  , 0,1,2,...j r r    of   criteria jC  is determined by using the formula: 

 

 
,

1

, 0,1, 2,3....

r

j

j r n
r

j
j

r







 



 

   Where  
1 2 3j j j j       in which  , 

1 2 3max , min , minj ij j ij j ij
i ii

          for all  1, 2,3...,i n such that 

,
1

1,for 0,1,2,3.....
n

j r
j

r


   

Step-2:   Determine the ideal values. 

Let C C C    where C denotes the set of all cost criteria and C  denotes the set of all benefit criteria. 

    The triplets  (0,1,1) and (1,0,0)  are   considered  as   ideal values   corresponding to  cost   criteria  and benefit 

criteria   respectively.  

If ( )IA j  represent the ideal value for the criteria jC ,  then   

( )IA j =
(1,0,0) if

( 1,2,3,....., )
(0,1,1) if

j

j

C C
j n

C C






 

Suppose IA  denotes the ideal values for all criteria i.e; { (1), (1), (3), (4), (5), (6)}I I I I I I IA A A A A A A . 

Step-3:  Calculate the similarity measures using ork k
AS S    between each alternative and it’s ideal values . 

Step-4:  Based on the values of similarity measures, rank the alternatives using the following  rule: 

p qA A if  and only if ( , ) ( , )k k
p I q IS A A S A A  or ( , ) ( , )k k

A p I A q IS A A S A A 
 
for  , {1,2,...., }p q m p q   

An illustrative example: 

     We consider a investment decision making problem given below adapted from [53].   

“There are five possible companies ( 1,2,3,4,5)iA i   which are considered as alternatives.  To  evaluate   these 

alternatives,  a person   hires an investment expert  who evaluates  these  companies  under the  set of  six  criteria, 

namely –technical ability  1C , expected benefit  2C ,competitive power on the market  3C , ability to bear risk

 4C  , management capacity  5C and organizational culture  6C ”. 

    The expert(s) evaluation  result  for each  alternative  based on each  criteria  is  depicted in Table-1:  

Table-1: Initial evaluation result 

 
1C  2C  3C  4C  5C  6C  

1A  <0.3,0.4,0.2> <0.4,0.7,0.6> <0.1,0.4,0.3> <0.5,0.5,0.2> <0.4,0.3,0.5> <0.6,0.1,0.4> 

2A  <0.6,0.1,0.4> <0.2,0.4,0.5> <0.5,0.3,0.4> <0.7,0.4,0.6> <0.6,0.3,0.6> <0.5,0.4,0.2> 

3A  <0.7,0.6,0.3> <0.5,0.4,0.5> <0.8,0.6,0.3> <0.7,0.4,0.6> <0.8,0.6,0.3> <0.9,0.5,0.3> 

4A  <0.5,0.5,0.2> <0.3,0.4,0.2> <0.4,0.3,0.5> <0.7,0.3,0.5> <0.1,0.4,0.3> <0.5,0.5,0.2> 

5A  <0.1,0.4,0.3> <0.6,0.6,0.4> <0.5,0.5,0.2> � 0.4,0.3,0.5> <0.3,0.4,0.2> <0.1,0.4,0.3> 

 

Then to find the best alternative(s), the following steps are executed: 

Step-1: Take r=1. 

Then we have, 
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1 11 21 31 2 12 22 32

3 13 23 33 4 14 24 34

5 15 25 35 6 16 26 36

0.7 0.1 0.2 1, 0.8 0.4 0.2 1.4,

0.8 0.3 0.2 1.3, 0.7 0.3 0.2 1.2,

0.8 0.3 0.2 1.3, 0.9 0.1 0.2 1.2.

       

       

       

             

             

             

 

1,1 2,1

3,1 4,1

5,1 6,1

1 1.4
0.135, 0.189,

1 1.4 1.3 1.2 1.3 1.2 1 1.4 1.3 1.2 1.3 1.2

1.3 1.2
0.176, 0.162,

1 1.4 1.3 1.2 1.3 1.2 1 1.4 1.3 1.2 1.3 1.2

1.3 1.2
0.176,

1 1.4 1.3 1.2 1.3 1.2 1 1.4 1.3 1.2

 

 

 

    
         

   
         

  
       

0.162.
1.3 1.2


 

 

Step-2:  As 
4C C 

 
and 

1 2 3 5 6, , , ,C C C C C C  , so the ideal values are given by: 

(1) (1, 0, 0), (2) (1, 0, 0) , (3) (1, 0, 0), (4) (0,1,1), (5) (1, 0, 0), (6) (1, 0, 0).I I I I I IA A A A A A        

Step-3: Using the similarity measure kS , (for k=2) we get, 

2 2 2 2 2
1 2 3 4 5( , ) 0.2792, ( , ) 0.3172, ( , ) 0.3854, ( , ) 0.2911, ( , ) 0.2916.I I I I IS A A S A A S A A S A A S A A          

Step-4:  Since 2 2 2 2 2
1 4 5 2 3( , ) ( , ) ( , ) ( , ) ( , )I I I I IS A A S A A S A A S A A S A A        , the best alternative is 3A  i.e; the 

best company is 3A . However the overall ranking is: 1 4 5 2 3A A A A A    . 

      In another aspect, if we apply the other proposed similarity measure namely, k
A S , then the problem  can be 

solved similarly as above. If we utilize the similarity measure 
kS  or  

k
A S  for different values of k, then the final 

the ranking order of the given alternatives are summarized in Table-2. We can conclude from table-2 that although 

the ranking orders of the alternatives are slightly different; the most desirable alternative is still 3A  
in all cases.  

Table-2: Ranking of alternatives 

  Overall measure values  

Value 

of k 

Similarity 

measures  

used  

1A  2A  3A  4A  5A  Ranking order 

1 kS  0.2332 0.2731 0.3139 0.2487 0.2474 
1 5 4 2 3A A A A A     

k
AS  0.6186 0.6489 0.6716 0.6305 0.6304 

1 5 4 2 3A A A A A     

2 kS  0.2792 0.3172 0.3854 0.2911 0.2916 
1 4 5 2 3A A A A A     

k
AS  0.6756 0.6985 0.7239 0.6889 0.6954 

1 4 5 2 3A A A A A     

3 kS  0.2997 0.3292 0.4162 0.3114 0.3151 
1 4 5 2 3A A A A A   

 
k

AS  0.7091 0.7244 0.7506 0.7191 0.7277 
1 4 2 5 3A A A A A   

 
4 kS  0.3105 0.3316 0.4199 0.3203 0.3245 

1 4 5 2 3A A A A A   
 

k
AS  0.7275 0.7373 0.7629 0.7343 0.7422 

1 4 2 5 3A A A A A   
 

5 kS  0.3170 0.3314 0.4131 0.3245 0.3280 
1 4 5 2 3A A A A A   

 
k

AS  0.7380 0.7441 0.7681 0.7424 0.7488 
1 4 2 5 3A A A A A   
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5. Comparative study 

     In pursuance of performance comparison of the weighted exponential similarity measures developed by us with 

the existing weighted similarity measure [49], a comparative study alongside their corresponding final ranking are 

summarized in tabular form, numbered by 3. It is very much translucent from table 3 that in spite of appearance of 

slight difference occur to the respective ranking order of the alternatives, the best i.e. most desirable alternative is 

absolutely same.  

Table-3: Comparative study 

  Overall measure values  
Value 
of k 

Similarity 
measures used  1A  2A  3A  4A  5A  Ranking order 

 
K=2 

kS  0.2792 0.3172 0.3854 0.2911 0.2916 
1 4 5 2 3A A A A A     

k
AS  0.6756 0.6985 0.7239 0.6889 0.6954 

1 4 5 2 3A A A A A     

[49]S   
0.2843 0.3661 0.4823 0.2342 0.2629 

4 5 1 2 3A A A A A   
 

 

6. Conclusion 

      In this paper, some new weighted exponential similarity measures between single valued neutrosophic sets have 

been introduced. The desirable properties of these proposed similarity measures are demonstrated. To show the 

efficiency of the proposed similarity measures, a multi-attribute decision making method is constructed. The 

proposed approach is examined on a investment decision making problem. Finally we did a comparative analysis of 

the proposed approach and get ensured  about  its best  performance. 
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