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Abstract

Accurate and timely recognition of plant diseases is crucial to prevent crop loss and ensure global food security.
This paper presents a robust ensemble-based framework that combines six classical and state-of-the-art deep
convolutional neural networks (DCNNs), including a ConvNeXt architecture, and integrates Neutrosophic
Science to better handle uncertainty in leaf images. The proposed approach features three main components:
(1) transfer learning with pre-trained DCNNs, (2) a model-averaging strategy to stabilise individual predic-
tions, and (3) a stacked ensemble design that employs a radial basis function (RBF) meta-learner to refine the
classification outputs. Experiments on the Plant Village dataset, comprising 54,305 segmented images of 38
plant diseases, included 10-fold cross-validation. The results show that the final stacking ensemble achieved
near-perfect performance with 99.97% accuracy and an F1 score of 99.55% on an unseen test set of 27,160
images. Compared with standalone models, the ensemble demonstrated greater robustness in distinguishing
visually similar diseases, benefiting from the complementary strengths of multiple DCNN architectures. The
Neutrosophic component further enhances reliability by modelling uncertainties due to noise, occlusions, and
environmental variations. Although a higher computational overhead and modest misclassifications remain,
especially in certain visually overlapping classes, this study demonstrates the effectiveness of an ensemble-
driven, uncertainty-aware strategy. These findings hold considerable promise for real-world agricultural appli-
cations, where rapid and accurate disease diagnosis is paramount.

Keywords: Plant disease classification; Deep learning; Computer vision; Transfer learning; Ensemble learn-
ing; Neutrosophic image

1 Introduction

Computer vision research in agriculture has gained prominence because of its capacity to boost food pro-
duction, reduce waste, and enhance efficiency, contributing to a more sustainable future [1]. Plant diseases
significantly affect crop yields, leading to financial losses for farmers and potential food scarcity in certain ar-
eas. Various approaches have been investigated for plant disease identification, including conventional meth-
ods, image-based techniques [2], Internet of Things (IoT) solutions [3], and approaches rooted in artificial
intelligence (AI) [4], and machine learning (ML) [5].

Conventional plant disease recognition methods, such as visual assessment and molecular analysis, have
proven effective when performed by skilled professionals. However, these approaches often require substan-
tial time and effort, and their precision may decrease, particularly in the early stages of disease progression
[6]. Imaging techniques, including hyperspectral imaging, drone-based imaging, and mobile applications, of-
fer noninvasive methods for capturing plant images, which can be examined using computer vision and ML
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algorithms. These approaches provide both high accuracy and efficiency, offering detailed insights into plant
health. Nevertheless, they typically require expensive equipment and specialised knowledge [7]. IoT-based
sensors can gather real-time data on plant growth, environmental conditions, and disease occurrence. When
this information is analysed using AI and ML techniques, it enables timely disease detection and management.
However, IoT-driven solutions rely on robust network infrastructure and hardware that may not be readily
available in all regions [8]. AI and ML technologies further enhance imaging and IoT solutions by expediting
and improving disease detection accuracy [9, 10]. By utilising large datasets, AI and ML models learn to
identify disease-specific patterns, enabling real-time analysis and decision-making. Moreover, many of these
techniques can be employed using cost-effective equipment, thereby increasing their feasibility for farmers in
resource-limited areas.

Deep Convolutional Neural Networks (DCNNs) have witnessed remarkable advancements, offering consid-
erable potential for accurate plant disease identification [11, 12, 13]. Various pre-trained deep models can
be employed on large-scale plant image datasets to classify diseases [14, 15, 16]. The application of transfer
learning, which involves fine-tuning models initially trained on extensive image collections using plant-specific
disease data, can enhance recognition precision in this context. However, the successful implementation of this
approach is contingent on the accessibility of substantial, correctly labelled plant image datasets.

Despite their strong performance, deep learning models can be limited by uncertainties in the plant images.
These uncertainties often stem from varying environmental conditions, occlusions, or noise. Neutrosophic
logic tackles such ambiguity by breaking decisions into three measurable components: truth, falsity, and
indeterminacy [17]. Incorporating neutrosophic principles into DCNN architectures enables a more nuanced
handling of unclear data, thus increasing reliability and interpretability. Consequently, this hybrid approach
remains robust even when challenging conditions are encountered in real-world applications.

A range of DCNN architectures, such as ResNet, Inception, DenseNet, VGG, and MobileNet, have demon-
strated reliable performance in plant disease tasks when refined through transfer learning from a large-scale
ImageNet dataset. However, many of these architectures are considered “classical” DCNNs, and their improve-
ments have plateaued. In contrast, the more recent ConvNeXt architecture represents a state-of-the-art design
that surpasses the expectations on the ImageNet benchmark. In this study, we evaluated ConvNeXt in com-
parison with traditional DCNN models for plant disease recognition. Additionally, we combined ConvNeXt
with weaker models using deep ensemble strategies to further enhance its detection capabilities. When com-
plemented by Neutrosophic Science, ConvNeXt not only achieves high accuracy, but also effectively manages
uncertainty in classification tasks, thus improving the reliability of diagnostic decisions.

The key contributions of this study are as follows.

(1) We trained and fine-tuned the recent ConvNeXt architecture for plant disease detection, an approach not
previously explored in this domain, and benchmarked it against established DCNN models.

(2) We created ensemble models by pairing ConvNeXt with weaker DCNN architectures, thereby boosting
the performance of ConvNeXt.

(3) We proposed a radial basis function (RBF)-based stacked ensemble design for plant disease recognition.
We then compared its outcomes with those of standalone DCNNs, model-averaging ensembles, and
top-tier custom plant detection frameworks.

(4) We incorporated neutrosophic logic into the recognition framework, thus offering a robust means of
handling uncertainties in plant disease image data.

The remainder of this paper is organised as follows. Section 2 reviews the relevant literature. Section 3 de-
scribes the DCNN models used in the plant disease classification experiments and details their training and
transfer learning strategies. Section 4 introduces ensemble learning methodologies. This is followed by a
description of the colour image to neutrosophic image conversion for the preprocessing step in Section 5.
Section 6 outlines the Plant Village dataset, data preparation processes, model performance assessment meth-
ods, and the key experimental parameters. The results of our experiments and performance analysis of the
proposed frameworks are discussed in Section 7, and comparisons with state-of-the-art deep networks are
provided. Finally, Section 8 presents the conclusions and insights for future research.
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2 Related Work

An IoT-based real-time system for detecting and classifying groundnut leaf diseases using hybrid machine
learning was introduced by [1]. This approach exhibited better accuracy, precision, and F1 score than pre-
viously reported methods. In a similar vein, [8] developed a cost-effective and highly precise technique for
identifying apple leaf diseases using the MobileNet model. They evaluated its performance against ResNet152
and InceptionV3 on a dataset gathered by agricultural experts in Shaanxi Province, China, and validated their
method through various experiments. Additionally, [16] created a mobile application called the “Rice Disease
Detector”, which identifies 12 rice diseases and nutrient deficiencies employing image segmentation tech-
niques and optimised models for offline use. Their research showed that the application could identify multiple
diseases in a single image, with MobileNetV2 demonstrating the most effective transfer learning capability.

A multitask learning approach for the concurrent prediction of plant types and diseases was proposed by [10].
Their method exploited shared representations between related tasks by integrating raw images and transferring
deep features into a multi-input network. This approach enhances the training efficiency for similar detection
tasks in the future. Conversely, [15] devised a technique for the automatic identification of tomato leaf dis-
eases. Their methodology used three compact convolutional neural networks (CNNs) and transfer learning
to extract deep features. The researchers assessed six classifiers, with the k-nearest neighbour and support
vector machine classifiers achieving the highest accuracies of 99.92% and 99.90%, respectively, despite using
a limited feature set.

The identification and classification of plant leaf diseases were addressed by [5] through the development of
a specialised PDICNet model. Their approach incorporated ResNet-50 for feature extraction, a modified Red
Deer optimisation algorithm for feature selection, and a DLCNN classifier for final classification. When eval-
uated using the Plant Village and Rice Plant datasets, this model demonstrated superior performance, surpass-
ing state-of-the-art methods in terms of accuracy and F1 scores. In a parallel study, [6] explored deep transfer
learning within a DCNN-based system for plant disease recognition, resulting in the creation of a lightweight
architecture called selective kernel mobile net (SK-MobileNet). This model achieved 99.28% accuracy on a
public dataset while reducing computational demands. Alternatively, [7] introduced VGG-ICNN, a lightweight
CNN designed for crop disease identification using plant leaf images. This model outperformed recent deep
learning methods, achieving 99.16% accuracy on the Plant Village dataset and maintaining a consistent per-
formance across five datasets, including Embrapa, Apple, Maize, and Rice. Focusing specifically on tomato
crops, [9] designed a compact six-layer CNN to detect diseases in tomato leaves. Trained on the Plant Vil-
lage dataset encompassing ten classes, this model outperformed state-of-the-art transfer learning approaches
while maintaining lower computational costs. Similarly, [11] developed a deep CNN model trained on an
open dataset comprising 39 plant leaf classes and background images, achieving 96.46% accuracy with data
augmentation, thereby surpassing several conventional machine learning techniques. In recent research, [12]
proposed an innovative deep-learning method incorporating a transformer block to capture both long-range
and local features. This approach demonstrated superior accuracy compared to existing convolution- and vi-
sion transformer-based models, achieving 99.94% on the Plant Village dataset, 99.22% on Ibean, 86.89% on
AI2018, and 77.54% on the PlantDoc dataset.

Significant progress in plant disease classification was achieved by [13], who devised an innovative framework
utilising a tailored CenterNet model with DenseNet-77 for feature extraction. Their approach encompassed
three distinct stages: region-of-interest annotation, deep keypoint extraction, and single-stage detection and
classification using CenterNet. This method demonstrated superior results when evaluated on the Plant Vil-
lage Kaggle database, surpassing the existing techniques. Concurrently, [14] proposed a cutting-edge plant
disease recognition system that employed transfer learning to extract high-level latent features and exhibited
exceptional classification performance across three separate datasets.

3 Base DCNN Models Used in Ensemble Strategies

A DCNN is a powerful pattern-recognition approach for learning large-scale data, which has been well proven
in the ImageNet challenge. The DCNN contains multiple layers through which the input data pass for feature
extraction and modelling the nonlinear relationship between the inputs and outputs of the corresponding task.
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The advantage of using a DCNN is that this type of deep network extracts the features internally. Unlike
traditional machine-learning approaches, a DCNN extracts various feature abstractions from low-level to high-
level, more complex features, while processing the input data from the lower layer to the deeper layers of the
network. A DCNN consists of various types of layers, including convolutional, pooling, bath normalisation,
fully connected dense, recurrent layers, residual connections, and various activation functions.

3.1 Transfer Learning

Very large deep networks usually require many data and iterations to learn a good model and overcome the
overfitting (high variance) problem. Instead of training a very large network, the knowledge (i.e. connection
weights) learned from another task is transferred to a new task; this is called transfer learning. In transfer
learning, deep convolutional layers of a network that are learned from another task are used as a pre-trained
base model for feature extraction without retraining these layers; that is, the connection weights are not updated
during the training of the new task. A new classifier layer was inserted at the top of these pre-trained layers, and
the extracted features from the pre-trained base were presented to the newly added classifier layer to obtain
the relationship between the extracted input deep features and target outputs. Figure 1 presents a graphical
representation of transfer learning in a plant disease recognition task. The ImageNet challenge consists of
more than 14 million images, and well-known deep network architectures were trained on this dataset. Thus,
these networks have already learned some relevant image features of the plant leaves. Therefore, transfer
learning is a suitable approach for use in Plant Village datasets where there is a lack of images of some disease
types.

Global average 
pooling

Softmax 
(output)

layer

Pretrained convolutional base
(frozen layers)

New classifier

Figure 1: Transfer learning. Pre-trained base can be any ImageNet convolutional neural network architecture
for feature extraction.

In this study, the following pre-trained ImageNet models were utilised: ResNet-152V2, Inception-V3, DenseNet-
201, VGG-16, MobileNet-V3L, and ConvNeXt-XL. The next section explains the architecture of these net-
works and defines their distinctions.

3.2 MobileNet Model

The MobileNet network architecture was proposed in [24] for efficient use in mobile devices with convolu-
tional networks as accurately as larger ones. This network introduces depthwise separable convolution instead
of regular convolution. Regular convolution uses the same filter for all the input image channels. Depthwise
separable convolution uses two separate operations: depthwise and pointwise convolution. Depthwise convo-
lution uses separate filters for each input image channel. Pointwise convolution, which is equivalent to regular
convolution with 1× 1 kernel, combines all output channels from depthwise convolution to one output value,
as shown in Figure 2. This process was repeated for each kernel to complete the convolution operations of
the layers. Both methods yield similar results; however, depthwise separable convolution is computationally
cheaper and faster, making it suitable for small mobile devices.

[25] introduced an inverted residual block, as shown in Figure 3. This block expands the input tensor before
filtering the data in depthwise convolution, followed by a projection layer compressing the data. This process
obtains lower-dimensional output features, and a residual connection is added to aid gradient flow through the
network. Working with a low-dimensional tensor after compression at the end of the bottleneck block reduces
the overall computations.
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Figure 2: Depthwise convolution is performed by independent spatial convolution per channel which is fol-
lowed by pointwise convolution.
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Figure 3: Sequence of convolutional layers within the inverted residual block.

3.3 VGG Model

The VGG network is a classical convolutional neural network architecture proposed by [21], using 3 × 3
kernel size for all convolution layers instead of the larger 11 × 11 in AlexNet [26]. Reducing the kernel size
increases the number of convolution layers, covering the same filtering areas with fewer parameters than the
larger kernels. This approach leads to a faster convergence and reduced overfitting. Additionally, after every
pooling operation, the number of filters in each convolution layer was doubled to recover lost information.

3.4 Inception Model

The salient parts of the images can vary, and the network must focus on extracting relevant features to correctly
classify objects. To address this issue, it is necessary to select the correct kernel size. Larger kernels lose details
by smoothing the extracted features, whereas smaller kernels provide more details. Instead of using one kernel
size, multiple sizes have been proposed for the same layer [19]. Thus, the deep neural network becomes
wider at the layers instead of deeper. The inception network uses three different kernel sizes for convolution
operations in each inception module: 1 × 1, 3 × 3 and 5 × 5. Max-pooling was also performed. Deep
networks can be computationally expensive. To limit the input channels, 1 × 1 kernel was used to perform
projection mapping to reduce channel dimensions. All outputs from the different kernel-sized convolutions
were concatenated channel-wise. Figure 4 shows the single-inception module used in this network.

3.5 ResNet Model

To model highly nonlinear data, deeper layers are required to represent complex input-output relationships.
Deeper networks enable the learning of features at many abstraction levels, from edges and corners in shallower
layers to complex features in deeper layers. However, deep networks face vanishing or exploding gradients,
where gradient signals approach zero quickly or grow exponentially, slowing gradient descent or causing large
weight updates. Identity mapping was proposed to address this issue [27]. The idea is that, when training
cannot find a solution for a layer, its output is at least as good as its input. This allows for an increase in the
number of convolutional layers with less sensitivity to gradient issues. Figure 5 shows a typical residual block.
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Figure 4: The inception module performs a 1 × 1 convolution first before presenting activations to 3 × 3 and
5 × 5 convolutions for channel dimension reduction. In the later inception network version, the 5 × 5 kernel
was replaced with two 3× 3 kernel layers to improve computational efficiency.

A copy of the input to the convolution layer propagates to the end of several layers without processing. This
creates another path with a residual connection (or skip connection), and both the convolution outputs and the
input are added element-wise. Thus, the gradient signals are less prone to strength loss.

+input
activation

output
activation

C
on

v 
3 

 3 ×

C
on

v 
3 

 3 ×

B
at

ch
 N

or
m

B
at

ch
 N

or
m

R
eL

U

R
eL

U

Figure 5: The input activation is skipped over two convolution layers, with both the skipped input activation
and output from the last convolution having the same dimension. If necessary, 1× 1 convolution can be used
to reduce the channel size of the skip connection for an element-wise addition.

3.6 DenseNet Model

Previously, ResNet used a short skip connection to create a deeper network and achieve better accuracy. How-
ever, [20] proposed DenseNet, a densely connected convolutional network using longer skip connections to
improve classification accuracy. In DenseNet, each convolution layer receives skip connections from all pre-
ceding layers, as shown in Figure 6. Unlike ResNet, the outputs from all preceding layers are concatenated
channel-wise before computing the output of the corresponding layer. This yields richer and more diver-
sified features, unlike ResNet which uses features correlated with the following layer. The classifier layer
in DenseNet receives features from all complexity levels from the earliest to the deepest layers, producing
smoother decision boundaries when the training data are insufficient. During backpropagation, owing to con-
nections between the earlier layers and the final classification layer, the earlier layers receive direct supervision
to update the connection weights.

Batch Norm,
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Conv 3  3×

Batch Norm,
ReLU,

Conv 3  3×

Batch Norm,
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Batch Norm,
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input
activation
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Figure 6: A 4-layer dense block, where each layer receives all the preceding layer feature maps before com-
puting the activation output as xl = hl([x0,x0, · · · ,xl−1]).
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3.7 ConvNeXt Model

ConvNeXt, a recent architecture proposed by [23], achieves an accuracy comparable to transformer-based
approaches while maintaining CNN design simplicity without incorporating transformer encoder or attention
mechanisms. It starts with a standard ResNet architecture, gradually modernising it by replacing existing layers
with improved approaches from other successful deep network architectures to match the Swin transformer
performance.
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Figure 7: The architecture of the ConvNeXt network without a classifier layer consists of four stages and
extracts features at different scales. LN and GELU represent layer normalisation and Gaussian error linear
units, respectively.

One change was a training technique using an AdamW optimiser. New image augmentation techniques like
Mixup, Cutmix, RandAugment, random erasing, stochastic depth, and label smoothing were introduced, which
improved network performance without changing the ResNet architecture. The computation ratio of the
ResNet blocks per stage was changed to 3:3:27:3, similar to the Swin transformer architecture. ConvNeXt
has three blocks in stages one, two and four, and 27 blocks in stage three, as shown in Figure 7. The stem layer
is changed to a 4 × 4 convolutional layer with a stride of four, similar to the Swin transformer’s “patchify”
layer. Standard convolution was replaced with depthwise and pointwise convolutions, and standard residual
blocks were replaced with inverted residual blocks. The kernel size was increased from 3× 3 to 7× 7, and the
depthwise convolution was moved to the first layer within the block. Rectified Linear Unit (ReLU) activation
functions were replaced with a Gaussian Error Linear Unit (GELU) before the channel size decreased in the
last 1 × 1 convolution layer within the inverted residual block. GELU activation is used only within inverted
residual blocks, thereby reducing the overall activation functions. Batch normalisation is replaced with layer
normalisation after depthwise convolution within the inverted residual blocks. A separate downsampling layer
with layer normalisation and 2 × 2 convolution with a stride of two is inserted between the stages, slightly
improving the performance. These changes yielded an accuracy similar to that of transformer-based networks.

3.8 Training of Pre-trained DCNN Models

DCNNs have proven highly effective for a wide range of tasks by learning hierarchical feature representations
from raw input data. However, real-world datasets often suffer from imbalanced class distributions, which can
hinder training and negatively impact overall performance. The error signals between the predicted and actual
outputs were computed using the focal loss cross-entropy function (FL), which is recommended for use when
the distributions of the data in each class are imbalanced [28]. The focal loss function is defined as follows:

DOI: https://doi.org/10.54216/IJNS.260210 138



International Journal of Neutrosophic Science (IJNS) Vol. 26, No. 02, PP. 132-152, 2025

FL(p) =

{
−α (1− f (p))

γ
ln (f (p)) , y = 1

− (1− α) f (p)
γ
ln (1− f (p)) , else

(1)

f (z) =
exp (z)∑c
k=1 exp (z)

(2)

where p is the logit output; f(·) is the softmax activation function; γ is the focusing parameter; α is the
weighting factor; and c indicates the number of output classes.

During the training of the DCNN models, a more sophisticated version of the standard backpropagation al-
gorithm called Adam optimisation was used. The Adam optimiser combines the momentum eq. (5), and root
mean square propagation (RMSprop) eq. (6) to remove the oscillation of the gradient descent to accelerate
the learning process. In addition, gradient centralisation (GC) is also integrated into the Adam optimisation,
as given in eq. (4), instead of using the computed gradients in eq. (3) with respect to the weights of the cor-
responding layer [l] directly to update the weights of the corresponding layers using eq. (7) during training.
Simply, GC computes the column mean of the gradient matrix (for the dense layer) or slice mean of the gradi-
ent tensor (for the convolutional layer) and subsequently centralises each column or slice to have a zero mean
before applying standard Adam optimisation.

g
[l]
t =

∂FL
∂w

[l]
t

(3)

ĝ
[l]
t = ΦGC(g

[l]
t ) (4)

m
[l]
t = β1m

[l]
t−1 + (1− β1)ĝt (5)

v
[l]
t = β2v

[l]
t−1 + (1− β2)ĝ

2 (6)

w
[l]
t+1 = w

[l]
t − ηt

m
[l]
t√

v
[l]
t + ϵ

(7)

where ΦGC(x) = xi − x̄i, ∀i = 1, 2, . . . , N , i indicates ith column vector or slice matrix, β1, β2 are momen-
tum and discount factor parameters respectively, ϵ is a very small constant number to prevent the denominator
from becoming zero, and ηt is the current learning rate.

4 Proposed Deep Ensemble Learning Strategies

Deep ensemble learning has emerged as a robust strategy for improving the performance and reliability of deep
neural networks. By integrating multiple learning models, this approach leverages diversity among individual
predictors to reduce variance, mitigate overfitting, and enhance generalisation. In applications ranging from
computer vision to natural language processing, combining the strengths of various models through ensemble
techniques has proven crucial for achieving state-of-the-art results. This section presents two popular ensemble
strategies, model-averaging and stacking, that illustrate the effectiveness of model fusion in deep learning.

4.1 Model-Averaging Ensemble

The variance problem is associated with the use of a standalone deep network model. This problem occurs
when the model attempts to learn small fluctuations in the data by modelling random noise in the training
dataset, which causes a high-variance (overfitting) issue. To overcome this, multiple deep models were trained
individually using the same training dataset, and the predicted probabilities of these models on the unseen
test data were averaged before the highest probability score among the classes was selected as the final class
prediction. Taking the predictions of the other models into account results in strengthening the indecisive
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prediction by using a standalone sensitive model. Furthermore, it is possible that the best-acquired model in
training did not exhibit the best performance on the unseen test data. Therefore, a combination of multiple
models can prevent incorrect predictions. Figure 8 presents an overview of the model-averaging ensemble
architecture. First, each model predicts the current input image, and then the prediction probabilities from all
the models are averaged to obtain the final probability values of the output classes. The class with the highest
probability is selected as the output of the classification. Thus, the magnitude of the incorrectly predicted
classes is reduced and the frequently predicted class among the acquired models dominates the final decision.
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Figure 8: Overview of the model-averaging ensemble architecture using deep network models.

4.2 Stacking Ensemble

The stacking ensemble approach contains two-stage data modelling, which are base and meta-models. In the
first stage, base models are used as the individual DCNN models, as used in the model-averaging ensemble,
where all base models are trained on the same training dataset and model the relationship between the input and
output multiclasses. Typically, the performance of base models on input data is expected to be diverse. Each
base model yields a softmax activation for each class, and the activation outputs from all base models are then
concatenated as new input data, which are then fed to the trained meta-model for the final softmax prediction.
Thus, instead of combining each model prediction with the same weight to contribute to the final outputs, the
stacking ensemble base models contribute to the final prediction based on their learned relationship with the
output classes. Figure 9 summarises the overall architecture of the stacking ensemble. In this specific plant
disease identification task, a radial basis function network (RBFN) was used as the meta-learning model.

The RBFN architecture comprises two primary layers: a radial basis function (RBF) layer and a softmax layer.
Initially, the combined predicted logit outputs from the base models were scaled in the range of [0,1] and then
fed into Gaussian functions, as described in eq. (8). Subsequently, these Gaussian outputs were normalised to
ensure that their sum was equal to one, as outlined in the eq. (9). The normalised outputs were then weighted
and aggregated before the final softmax output activations were calculated, as detailed in eq. (10).

φi(u) = exp

(
−||u− ci||2

2σ2
i

)
(8)

δi =
φi∑k
j φj

(9)

ŷi = f

(
k∑

i=1

θiδi + bi

)
(10)

where ||·|| indicates the Euclidean distance; ci is the centroid of i-th RBF; u is the concatenated logit outputs
from base models; σi is the width of the Gaussian function; k indicates the number of the RBFs on the network;
b is the bias term and f(·) is softmax activation function given in eq. (2).
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Figure 9: Overview of the stacking ensemble architecture in which the prediction of base DCNN models is
combined within the RBFN-based meta model.

Meta model (RBFN) training. The RBFN has two training stages. First, the centroid of each RBF is
obtained using the k-means clustering algorithm. Therefore, the cluster number indicates the number of RBFs
used in a network. Once the centroid of each RBF is obtained, the p-nearest neighbour approach is used to
compute the width of each RBF, as given in eq. (11). After obtaining the normalised Gaussian outputs for all
the training samples, the softmax regression model between the normalised Gaussian values and the one-hot
encoded target training output classes were trained in the same manner as the base DCNN models were trained
using the Adam optimisation algorithm, as described in Section 3.8.

σi =
1

p

 p∑
j=1

||ci − cj ||2
1/2

, where p = 2 (11)

Stacking ensemble training. The k-fold cross-validation approach was used to train the base and meta-
model of the stacking ensemble approach. The entire training dataset was split into k equal-sized folds. Then,
the base models were trained using k-1 folds, and the remaining fold was used to make predictions. This
process was repeated k times, and at each repetition, different folds were used for the prediction. In addition,
the parameters of the base models are re-initialised at the beginning of each repetition in order to predict
that the fold is not seen during the training which results in overfitting if parameters are not re-initialised.
These out-of-fold predictions formed a new dataset to train the meta-model. The complete training steps are
presented in Listing 1.

5 Neutrosophic Image Conversion Phase for Colour Image Preprocessing

DCNNs encounter significant challenges when dealing with images or regions that exhibit ambiguity, such
as partial occlusion, overlapping symptoms, or suboptimal lighting conditions. These factors often lead to
elevated uncertainty in network predictions. To mitigate this, [17] introduced neutrosophic logic, which incor-
porates three membership components: the truth degree (T ), representing how strongly a pixel (or instance)
belongs to a given class; the indeterminacy degree (I), representing uncertainty; and the falsity degree (F ),
indicating the degree of non-membership to the class.
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Listing 1: Python-style pseudocode of the stacked ensemble training.
1 # Load base and meta model objects
2 from models import DCNN,RBFN
3 # Load training dataset: X(input) and y(output)
4 X, y = load_dataset()
5 # Define number of base models in a form (’name’,model)
6 base_models = [(’base_1’,DCNN()),(’base_2’,DCNN()),...]
7 # Define meta-model
8 meta_model = RBFN()
9 # Number of folds

10 k = 10
11 # Use stratified k-fold cross-validator for imbalanced dataset
12 skf = StratifiedKFold(n_splits=k, shuffle=True)
13 # Initialize arrays for storing out-of-fold predictions
14 oof_preds = np.zeros((X.shape[0], len(base_models)))
15 # Train base models and generate out-of-fold predictions
16 for train_idx, val_idx in skf.split(X):
17 X_train, X_val = X[train_idx], X[val_idx]
18 y_train = y[train_idx]
19 for i, (name, model) in enumerate(base_models):
20 cloned_model = clone(model) # get initial model
21 cloned_model.fit(X_train, y_train) # train the current base model
22 oof_preds[val_idx, i] = cloned_model.predict(X_val) # get logit outputs
23 # Train meta-model on out-of-fold predictions
24 meta_model.fit(oof_preds, y)
25 # Retrain base models on the full training dataset
26 final_base_models = [clone(model).fit(X, y) for _, model in base_models]

For plant disease images, we can convert each channel of a colour image x ∈ Zh×w into a neutrosophic image
xN ∈ RH×W×3 by defining suitable membership functions T, I, and F . In the neutrosophic domain, a pixel
x(i, j) is mapped to

xN (i, j) =
{
T (i, j), I(i, j), F (i, j)

}
,

where these three components denote the corresponding neutrosophic set memberships. As described by [29],
each colour channel is transformed independently. Specifically,

T (i, j) =
x(i, j)− xmin

xmax − xmin
, (12)

x(i, j) =
1

k × k

i+ k
2∑

m=i− k
2

j+ k
2∑

n=j− k
2

x(m,n), where k = 7 (13)

I(i, j) =
δ(i, j)− δmin

δmax − δmin
, (14)

δ(i, j) =
∣∣x(i, j) − x(i, j)

∣∣, (15)
F (i, j) = 1 − T (i, j). (16)

In these equations, x(i, j) is the local mean in a k × k neighborhood window around (i, j). The terms xmin

and xmax denote the global minimum and maximum of the local mean across the entire image. The quantity
δ(i, j) is the absolute difference between a pixel intensity x(i, j) and its local mean x(i, j), whereas δmin and
δmax are the minimum and maximum values of δ(i, j) across all pixels in the image.

Within the RGB colour model, each channel (R, G, B) produces its own
(
Tr, Ir, Fr

)
,
(
Tg, Ig, Fg

)
, and(

Tb, Ib, Fb

)
, thereby expanding the total number of channels from three to nine. Although training a custom

deep network on this 9-channel input may be straightforward, using transfer learning with standard ImageNet-
trained models can be problematic because these models expect only three input channels.

To address this mismatch, we computed the average neutrosophic channels:

Tavg =
Tr + Tg + Tb

3
, Iavg =

Ir + Ig + Ib
3

, Favg =
Fr + Fg + Fb

3
, (17)

thus yielding a 3-channel image (Tavg, Iavg, Favg) that is compatible with typical pre-trained networks. In a
transfer learning setting, the weights of most layers are often frozen, whereas the newly introduced classifier
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layer is trained from scratch. However, because the first convolutional layer in these pre-trained models was
originally optimised for standard RGB intensities, we re-initialised it to learn from the (T, I, F ) representation.
This approach preserves the benefits of pre-trained feature extraction in deeper layers while allowing the
initial layer to adapt to the neutrosophic-based input channels. An overview of RGB-to-neutrosophic image
conversion is illustrated in Figure 10.

RGB Image

(T)rue Image

(I)ndeterminacy Image

(F)alsity Image

TIF Image

DCNN
Model

Plant Disease 
Prediction

Figure 10: Overview of the conversion of RGB colour images to neutrosophic T ,I , and F images as input to
the DCNN model.

6 Experimental Methods

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11: Sample images from the Plant Village dataset. (a) Apple black rot. (b) Cherry powdery mildew.
(c) Corn gray leaf spot. (d) Grape black rot. (e) Orange haunglongbing. (f) Peach bacterial spot. (g) Potato
late blight. (h) Strawberry leaf scorch. (i) Tomato septoria leaf spot. (j) Tomato yellow leaf curl virus.

6.1 Datasets

The Plant Village dataset consists of 54,305 images of 38 plant diseases with the shape of [256 × 256]. Fig-
ure 11 shows 10 various sample images. As can be clearly seen, the images have already been segmented;
therefore, only the leaf part of the plant appears in the image. Thus, using the segmented leaf images provides
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a clear focus for the network model to learn the unique disease of these leaf images during training; otherwise,
unsegmented leaf images contain much irrelevant information, which generates noise for the network training,
which might result in lower accuracy. In addition, the number of sample images was not uniformly distributed
in each plant disease, where the classes of orange haunglongbing, tomato yellow leaf curl virus diseases, and
soybean healthy contained the highest number of sample images, with 20.28%, 18.75%, and 19.73% of the
whole dataset, respectively. Approximately 40% of the image data were shared with 35 plant diseases, with
a similar distribution ratio. Table 1 lists the names of the plant diseases available in Plant Village dataset and
their corresponding class identifier (ID).

Table 1: Plant disease names and their corresponding indexes for the Plant Village dataset.

ID Disease Name ID Disease Name ID Disease Name

0 Apple scab 13 Grape leaf blight 26 Strawberry leaf scorch

1 Apple black rot 14 Grape healthy 27 Strawberry healthy

2 Apple cedar rust 15 Orange haunglongbing 28 Tomato bacterial spot

3 Apple healthy 16 Peach bacterial spot 29 Tomato early blight

4 Blueberry healthy 17 Peach healthy 30 Tomato late blight

5 Cherry powdery mildew 18 Pepper bell bacterial spot 31 Tomato leaf mold

6 Cherry healthy 19 Pepper bell healthy 32 Tomato septoria leaf spot

7 Corn grey leaf spot 20 Potato early blight 33 Tomato two spotted spider mite

8 Corn common rust 21 Potato late blight 34 Tomato target spot

9 Corn northern leaf blight 22 Potato healthy 35 Tomato yellow leaf curl virus

10 Corn healthy 23 Raspberry healthy 36 Tomato mosaic virus

11 Grape black rot 24 Soybean healthy 37 Tomato healthy

12 Grape esca 25 Squash powdery mildew

6.2 Performance Evaluation Metrics

To evaluate the performance of the DCNN models, a 38 × 38 confusion matrix was generated using a test
dataset. Then, for each class, true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) were computed using the obtained confusion matrix. Subsequently, various statistical tests were per-
formed. These were accuracy (ACC), F1 score, Matthews correlation coefficient (MCC), true-positive rate
(TPR), and true-negative rate (TNR). To address the multi-class problem, these measurements were performed
for each class independently, and then the weighted average value over the classes was reported as the overall
performance of each model. The most informative statistical tests are F1 score and MCC, which are the main
criteria for evaluating the efficiency of the models. The equations for the statistical tests were as follows:

ACC =
TP + TN

TP + TN + FP + FN
(18)

F1 =
2 · TP

2 · TP + FP + FN
(19)

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(20)

TPR =
TP

TP + FN
(21)
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TNR =
TN

TN + FP
(22)

6.3 Experimental Procedure

The dataset was divided into two halves: training (27,145 images) and test (27,160 images) sets. To ensure
that all types of diseases were observed by the network during training, each plant disease class was split
in half, where one half was used for the training set and the other half was used for the test set, instead of
randomly splitting the training and test datasets without controlling the sample size in each class per set. The
training dataset was used for network model training and selection, and the test dataset was used to evaluate
the final unbiased performance of the selected model. It is also important to note that all images were resized
to [224 × 224] before being used as the input to the pre-trained DCNN models. Figure 12 shows the number
of images in each class of plant diseases after being equally split in the training and test sets.
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Figure 12: Distribution of the Plant Village leaves dataset in each class. Each class is split into two equal
halves to be used for the training and testing processes.

A k-fold cross-validation approach was employed to statistically compare the performances of the models.
Upon completion of each training process (a total of k training sessions), all the performance measures (ACC,
F1, MCC, TPR, and TNR) of the test folds were computed and recorded. Following the completion of all
the training processes, the mean value of each performance measure and its corresponding standard deviation
were calculated and reported for the overall performance of the model. However, a notable issue with the Plant
Village dataset was the disparity in the number of images across plant disease classes. This imbalance may
lead to complications when dividing the dataset into k-folds because the test fold must encompass all positive
and negative classes (i.e. the test fold must contain images from all 38 plant disease classes). To address this
issue, stratified random selection was implemented to select images from the plant disease dataset, as opposed
to random selection, thereby ensuring that each fold comprised of images from each class. Notably, only
the training dataset was utilised during the k-fold cross-validation process, and identical folds were initially
generated for each compared model; thus, the comparison was conducted in a reliable and equitable manner.
In subsequent experiments, k = 10 was utilised. After obtaining the optimal model, it was retrained using all
training images. Subsequently, the overall performance of the model was evaluated by using an unseen test
dataset. Finally, a summary of all training parameters for the models is provided in Table 2.

7 Experimental Results

Previously, neutrosophic image preprocessing within the standalone pretrained model training was proposed,
and an extensive comparison can be found in [30]. The results demonstrated that the neutrosophic image
exhibited superior performance compared to the grayscale image. In subsequent experiments, all comparisons
between the standalone pretrained models and ensemble strategies involving various combinations of models
were conducted using the neutrosophic images. The final optimal model was additionally trained using an
RGB colour image for comparative analysis.
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Table 2: Training parameters of the pre-trained & RBFN models.

Description Value/Method

Pre-trained Model

Number of Epoch 30

Batch Size 32

Image Size [224×224]

Number of Classes 38

Learning Rate 0.001

Dropout Rate 0.5

Feature Extraction Layer Global Average Pooling

Loss Function Focal Loss Cross-Entropy

Optimizer Adam with GC

Augmentation Not Applicable

RBFN Model

RBF Type Normalised Gaussian Function

Number of RBFs 100

Centroid Training K-means

Width of Kernel P-nearest neighbours (p=2)

Neuroscopic Preprocessing

Neighborhood window size 7× 7

7.1 Performance Comparison of Transfer Learning Models

Table 3 shows the performance of each model in 10-fold cross-validation. The ConvNeXt-XL deep network
model outperformed the other models, with average F1 and MCC scores of 0.9891 and 0.9889, respectively.
By contrast, the worst performance in identifying plant disease types was obtained when the InceptionNet-V3
model was used, where F1 = 0.8797 and MCC = 0.8798. It is important to emphasise that the performance
of the MobileNet-V3L model is also promising, as it achieves the second-best performance (F1 = 0.9641 and
MCC = 0.9636) during the 10-fold cross-validation. In particular, when limited processing power or memory
is available on the board of any device, such as flying drones or mobile phones, which are used for running the
acquired very large deep network for plant disease identification, the MobileNetV3Large model is preferable
for use in these devices because ConvNeXt-XL contains 350.1 million of connection weights. However, the
MobileNetV3Large model contains only 5.4 million weights, making MobileNetV3Large less expensive from
a computational point of view.

7.2 Performance Comparison of Ensemble Learning Strategies

Various pre-trained models were combined within the ensemble mechanisms. Table 4 lists the combined
model labels that are used for clarity. Two types of ensemble approaches were investigated, as discussed in
sections 4.1 and 4.2: model-averaging and stacking ensemble approaches. Additionally, the optimal model
(i.e. ConvNeXt-XL model) obtained during the standalone transfer learning training is included as label ‘A’
for comparative purposes.

The performance of the model-averaging ensemble models is presented in Table 5. Notably, the standalone
ConvNeXt-XL model exhibited a slight advantage in performance over other model-averaging approaches.
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Table 3: Performance of the pre-trained models on the Plant Village dataset obtained from 10-fold cross-
validation.

Model ACC F1 MCC TPR TNR

ResNet-152V2 0.9962±0.0003 0.9383±0.0053 0.9375±0.0050 0.9389±0.0053 0.9978±0.0003

Inception-V3 0.9921±0.0004 0.8797±0.0057 0.8798±0.0049 0.8828±0.0061 0.9951±0.0003

DenseNet-201 0.9978±0.0003 0.9620±0.0047 0.9619±0.0044 0.9630±0.0045 0.9986±0.0002

VGG-16 0.9949±0.0004 0.9150±0.0065 0.9155±0.0058 0.9169±0.0059 0.9969±0.0003

ConvNeXt-XL 0.9994±0.0001 0.9891±0.0018 0.9889±0.0018 0.9892±0.0017 0.9997±0.0001

MobileNet-V3L 0.9979±0.0002 0.9641±0.0015 0.9636±0.0016 0.9645±0.0015 0.9988±0.0001

Table 4: Combination of pre-trained models which are used for the ensemble systems.

Label Combined Models

A [ConvNeXt-XL]

B [ConvNeXt-XL, MobileNet-V3L]

C [ConvNeXt-XL, DenseNet-201]

D [ConvNeXt-XL, MobileNet-V3L, DenseNet-201]

E [MobileNet-V3L, DenseNet-201]

Nevertheless, Model ‘B’, which combines ConvNeXt-XL and MobileNet-V3L, demonstrated comparable ef-
ficacy to that of the standalone ConvNeXt-XL model. Given that ConvNeXt-XL and MobileNet-V3L were
among the most effective models when employing standalone transfer learning, their averaged predictions
yielded results that closely approximated those of the top-performing standalone ConvNeXt-XL model. How-
ever, inaccurate predictions made by the MobileNet-V3L model adversely affected the overall accuracy when
averaged with ConvNeXt-XL. Moreover, the lack of confidence in erroneous predictions from both models
precluded the mutual correction of false negative outcomes.

Table 5: Performance of the model-averaging ensemble models on the Plant Village dataset obtained from
10-fold cross-validation.

Model ACC F1 MCC TPR TNR

A 0.9994±0.0001 0.9891±0.0018 0.9889±0.0018 0.9892±0.0017 0.9997±0.0001

B 0.9994±0.0001 0.9890±0.0010 0.9888±0.0010 0.9891±0.0010 0.9997±0.0000

C 0.9993±0.0001 0.9869±0.0013 0.9868±0.0012 0.9870±0.0012 0.9996±0.0001

D 0.9993±0.0001 0.9868±0.0014 0.9867±0.0013 0.9870±0.0013 0.9996±0.0001

E 0.9983±0.0002 0.9706±0.0032 0.9706±0.0030 0.9712±0.0030 0.9990±0.0001

On the other hand, Table 6 shows the classification performance of five stacked ensemble models (A–E)
evaluated on the Plant Village dataset using 10-fold cross-validation. Model A already achieves a high baseline,
with ACC near 99.94%, F1 and MCC values of approximately 0.989. However, Models B, C, D, and E
exhibit slight yet consistent improvements in all metrics. These improvements suggest that the meta-model
effectively captures the relationship between the activations of the base models and the actual plant disease
labels, thereby correcting misclassifications through the additional stacking layer. Notably, Model D delivered
the best overall performance across ACC, F1, MCC, and TPR, indicating that it excels in correctly classifying
positive cases while maintaining minimal misclassification. Meanwhile, Model B achieved a top-tier TNR
(0.9999), demonstrating a high degree of accuracy in identifying negative cases. Although the gains over
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Model A may appear small, they are meaningful, given the near-ceiling performance. Moreover, the small
standard deviations across these metrics underscore the stability of ensemble approaches over multiple folds.
The Plant Village dataset is well segmented and thus less prone to environmental noise or distortion, which
partly explains the very high baseline performance of Model A. Given the already near-perfect results, any
further improvements become especially challenging, highlighting the significance of the gains achieved by
Models B, C, D, and E.

Furthermore, the optimal model D was trained using RGB colour images (i.e. Model D+RGB) instead of
neutrosophic images. The results show that training with neutrosophic images significantly outperformed
training with RGB images, similar to the results of [30]. RGB-based model D and standalone ConvNeXt with
neuroscopic image model A yielded similar results, with F1 scores of 0.9885 and 0.9891, respectively.

These findings underscore the effectiveness of stacked ensemble learning, in which multiple base learners are
combined to mitigate individual weaknesses and capture complementary strengths. By integrating diverse pre-
diction patterns, the ensemble can be generalised to unseen instances, which often yields robust improvements.
Consequently, even in scenarios with strong single-model baselines, stacking provides discernible benefits: el-
evating performance metrics and showcasing the synergy gained through ensemble strategies.

Table 6: Performance of the stacking ensemble models on the Plant Village dataset from 10-fold cross-
validation.

Model ACC F1 MCC TPR TNR

A 0.9994±0.0001 0.9891±0.0018 0.9889±0.0018 0.9892±0.0017 0.9997±0.0001

B 0.9997±0.0003 0.9905±0.0024 0.9904±0.0023 0.9902±0.0022 0.9999±0.0001

C 0.9996±0.0003 0.9903±0.0019 0.9902±0.0018 0.9900±0.0018 0.9998±0.0001

D 0.9997±0.0002 0.9909±0.0022 0.9910±0.0024 0.9906±0.0023 0.9999±0.0002

E 0.9996±0.0002 0.9902±0.0023 0.9901±0.0022 0.9899±0.0021 0.9998±0.0002

D+RGB 0.9992±0.0003 0.9885±0.0021 0.9884±0.0021 0.9886±0.0020 0.9996±0.0003

7.3 Acquisition of Final Model

After determining the best model for plant disease identification, which is a combination of the ConvNeXt-
XL, MobileNet-V3L, and DenseNet-201 models using the RBFN-based meta-model in the stacking ensemble
approach, the model was retrained using all 27,145 training images using the hybrid training algorithm de-
scribed in Listing 1, and the acquired model was verified using a test dataset containing 27,160 unseen images.
To prevent the base models in the stacked ensemble system from overfitting, image augmentation methods
were also added during the training process, and only the training images were augmented because these im-
ages were used to optimise each base model to prevent them from becoming highly variable during inference.
Consequently, random flip (flipping both horizontally and vertically), zoom (±10% vertical zooming), and
translation (±10% shifting both vertically and horizontally) were used for image augmentation. It is important
to note that RGB-to-neutrosophic image conversion is applied after the image is augmented. The same training
parameters were used, as listed in Table 2. Once the connection weights of the newly trained classifier layer
of the base models were learned, the acquired base models were fine-tuned for further improvement using
additional 30 epochs. For the fine-tuning process, the last 20 layers (i.e. deeper layers) of each base model
were enabled to be trainable (unfronzen) to update the connection weights. However, it is important to note
that changing these connection weights by a large magnitude can be very dangerous, as it can cause the learned
knowledge to be lost. Hence, the learning rate was set to a very low constant (η = 0.00001). In addition, while
unfreezing the layers of these base models for further learning, any batch normalisation layer with the model
architectures was excluded from the unfreezing process.

The overall performance of the stacked ensemble model is shown in Table 7. The model demonstrated a very
robust and reliable identification of the true disease types, where TPR had a value of 0.9955, which implies
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Table 7: Overall performance of the stacked ensemble model on the test dataset (27,160 images) after retraining
using all training images.

Measure Score

ACC 0.9997

F1 0.9955

MCC 0.9954

TPR 0.9955

TNR 0.9999

that less than 0.5% of the test images were misclassified as incorrect disease types. This can also be observed
in the confusion matrix shown in Figure 14, where 122 of 27,160 images (0.45%) were misclassified.

Furthermore, the performance of the acquired stacked ensemble model was the lowest for predicting class
9 (i.e. corn northern leaf blight), as shown in Figure 14, where 31 images were misclassified and 26 of
them were incorrectly classified as class 7 (i.e. corn grey leaf spot). One reason for this could be that the
number of images available for both classes 9 and 7 was only 1.81% and 0.94% of the entire training dataset,
respectively, and more images were required to distinguish these two closely similar classes. Figure 13 shows
some misclassified cases in which the acquired model was unable to detect the true disease type with a large
confidence margin between the probability scores of the first- and second-predicted classes.

Corn gray leaf spot
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2
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Corn gray 
leaf spot

Corn northern
leaf blight 0.9498

0.0502

(a)

Tomato target spot
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Figure 13: Examples of various misclassified images from the test dataset. The title of each image indicates
the actual disease label of the plant.

The performance of the proposed stacked ensemble model for plant disease recognition was also compared
with that of recent state-of-the-art systems that had the best performance on the Plant Village dataset. The
results show that the proposed model achieved one of the best performances among the top, as shown in
Table 8. However, the number of training images used in these models is different, and the number of training
images directly affects the learning capability of such large deep network-based models. Therefore, it would
not be fair to state that any one model outperformed the others.
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Figure 14: The confusion matrix was acquired from the test images (27,160 images), which shows the perfor-
mance of the stacked ensemble model predictions against the actual classes.

Table 8: Comparison of state-of-the-art plant disease recognition models trained using the Plant Village
dataset.

Method
Train Image

Size

Test Image

Size

Number of

Diseases
ACC F1

ICVT[12] 44,371 11,077 39 99.94% 99.88%

VGG-ICNN[7] 34,755 11,061 38 99.16% -

CenterNet[13] 38,017 5,316 38 99.98% 99.72%

Stacked Ensemble (proposed) 27,145 27,160 38 99.97% 99.55%

8 Conclusion

This study introduced a novel ensemble-based framework for plant disease recognition, leveraging both a state-
of-the-art ConvNeXt architecture and classical DCNNs (DenseNet and MobileNet, among others), enhanced
by Neutrosophic Science, to address uncertainties in leaf images. Experimental evaluations on the Plant Village
dataset demonstrate that the proposed stacked ensemble design consistently achieves near-perfect performance,
with 99.97% accuracy and an F1 score of 99.55% on 27,160 unseen images.
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A key contribution of this work is the combination of transfer learning, multimodel averaging, and a stacked en-
semble with neutrosophic logic for uncertainty modelling. The RBF-based meta-learner effectively harnesses
the complementary strengths of individual DCNNs, reduces misclassifications, and improves generalisation.
By explicitly quantifying ambiguous regions through neutrosophic membership components, the system in-
creases the interpretability and resilience when dealing with noisy or partially occluded leaf images.

Despite these advances, several limitations of this study remain. First, stacking multiple DCNNs increases
the computational and memory requirements, making the framework more challenging to deploy in real-time
or resource-constrained settings. Second, although the Plant Village dataset is large, it consists of uniformly
segmented images, which may limit the adaptability of the model to unsegmented or varied real-world condi-
tions. Finally, the performance drops slightly in certain visually similar classes (e.g. corn leaf blight variants),
suggesting the need for more diverse training samples or targeted data augmentation strategies.

Looking ahead, expanding the datasets to include non-segmented leaves and a wider range of environmental
conditions will provide a more realistic test bed. Additionally, techniques such as model compression, prun-
ing, and quantisation can support low-power devices, such as drones and smartphones, for in-field disease
diagnosis. Extending the neutrosophic framework to handle multiple concurrent diseases or new plant disease
variants would further enhance real-world applicability. Overall, this study underscores that integrating mod-
ern CNN architectures with ensemble learning and explicit uncertainty modelling offers significant promise
for sustainable and efficient agriculture, paving the way for early and accurate plant disease management.
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