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Abstract

In this careful study , through the concept possibility interval valued neutrosophic hyper soft set (abbreviated
as piv-NHSS) which is combined from the hypersoft set (HSS) and Interval-valued neutrosophic set under
the posobolity degree and each iv-NHSS is assigned a possibility degree in the interval [0, 1]. Based on this
concept, we present a more flexible, expanded method for a previous concept named possibility interval valued
neutrosophic hyper soft matrix (piv-NHSM) as a new generalization of piv-NHSS. In this work, we also present
several algebraic operations and also all the mathematical properties associated with this model. In addition
to the above, we have presented a clear algorithm based on the matrix properties of this model, which has
been used to solve one of the multi-property decision-making problems. Finally, the correlation coefficient
for this concept was defined and explained in detail according to an approved mechanism, with a numerical
example provided to illustrate the mechanism of use. Moreover, we develop a new algorithm for solving the
decision-making issue based on the proposed correlation coefficient for piv-NHSS .

Keywords: Interval-valued neutrosophic set; Soft set; Hypersoft set; Interval-valued neutrosophic hypersoft
set; Possibility interval-valued neutrosophic hypersoft matrix; Correlation coefficient for possibility interval-
valued neutrosophic hypersoft sets; Decision-making

1 Introduction

Correlation is crucial in statistics and engineering, helping to assess the relationship between two variables.
While probabilistic methods are used in engineering, they face challenges, such as relying on large, random
datasets and dealing with uncertainties in complex systems, which makes accurate probabilities difficult to
obtain. As a result, limited data can make probability-based results less useful for experts. In real-world sce-
narios, insufficient data may prevent accurate processing of standard statistical information. Consequently,
probabilistic methods are often inadequate for handling uncertainties, leading researchers to propose alterna-
tive solutions for uncertain problems. In response to this requirement, Smarandache1 presented an innovative
mathematical model called neutrosophic to deal with data that includes issues of ambiguity, uncertainty, and
inconsistency. Neutrosophic sets represent a groundbreaking advancement in the realm of mathematical mod-
eling and decision-making, particularly in situations characterized by uncertainty and imprecision. Unlike
traditional sets that rely solely on crisp boundaries and binary classifications, neutrosophic sets embrace the
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complexity of real-world scenarios by allowing for degrees of truth, indeterminacy, and falsehood. This triadic
approach opens a myriad of possibilities across various fields, from artificial intelligence to risk assessment in
finance.

The concept of neutrosophic sets is rooted in the idea that knowledge is not always complete or precise. For
example, in decision-making processes, information may often be ambiguous or contradictory. Neutrosophic
sets provide a framework to represent this ambiguity mathematically, enabling more nuanced analyses. By
incorporating the possibility of indeterminate states, neutrosophic sets facilitate a more comprehensive un-
derstanding of problems, allowing for solutions that better reflect the complexities of reality.In real-world
applications where the universal set is used, it is essential to define the three functions of NS. To address this,
Wang et al.2 introduced the concept of single value-NS (sv-NS) and demonstrated its operations along with
some algebraic properties.Subsequently, to leverage the flexibility offered by interval structures, Wang et al.3

expanded sv-NS into interval-valued NS (iv-NS), where each NS structure is represented as an interval value.

In practical applications, neutrosophic sets can be utilized in areas such as medical diagnosis and,4, 5 where
symptoms may not clearly indicate a specific condition. Here, neutrosophic sets can help model the uncer-
tainty inherent in diagnosis, allowing healthcare professionals to make more informed decisions. Similarly, in
engineering and environmental studies, neutrosophic sets can aid in evaluating risks and uncertainties, leading
to more robust and resilient designs.6–9

The potential of neutrosophic sets lies in their ability to model and analyze uncertainty in a way that traditional
sets cannot. As researchers continue to explore and expand the applications of neutrosophic theory, we can
expect to see innovative solutions that address the complexities of various domains, ultimately enhancing our
understanding and management of uncertainty in an increasingly intricate world.

This work was a great incentive for researchers to integrate this concept with many other mathematical con-
cepts such as algebra14 , geometry,10Statistically11 , complex analysis,12 and algebraic topology,13 in addition
to discovering many life applications such as medicine, economics, computer science, and many other appli-
cations.15

The possibility of neutrosophic sets lies in their ability to capture the complexity of human reasoning and
the ambiguity present in decision-making processes. For instance, consider a scenario in which a manager
must choose between multiple projects. Each project may have varying levels of feasibility, potential profit,
and associated risks. Traditional methods might struggle to adequately represent the uncertainties involved,
leading to suboptimal choices. In contrast, neutrosophic sets enable the manager to express varying degrees of
truth regarding the projects’ success, while simultaneously accounting for the uncertainties and contradictions
inherent in the evaluation process.

This flexibility extends beyond mere representation; it empowers decision-makers to apply advanced mathe-
matical tools, such as neutrosophic logic and neutrosophic probability, to analyze and synthesize information.
As a result, neutrosophic sets pave the way for more informed and nuanced decisions, enhancing outcomes
in fields ranging from finance and engineering to healthcare and social sciences. Thus, the exploration of
neutrosophic sets not only enriches theoretical frameworks but also holds practical implications for improving
decision-making processes in an increasingly complex world. This idea inspired many researchers and made
them present many ideas, including: Karaaslan introduced the operation on the Possibility of neutrosophic
soft sets16 that were as a combination of neutrosophic sets and soft sets. Possibility degree of single-valued
neutrosophic hypersoft set (psv-NHSS) integrated by Al-Hijjawi and Alkhazaleh17 and used resolve the solid
waste site selection problem. Recently, Romdhini et al.18 discussed three decision-making algorithms based
on possibility interval-valued fuzzy hypersoft set (PIVFHS-set). To overcome the above-mentioned limitations
Eman et al.19 extended the concept of Possibility single-valued neutrosophic hypersoft set (psv-NHSS) to pos-
sibility interval valued neutrosophic hyper soft set (piv-NHSS) by merging and combining both Hypersoft set
and Interval-valued neutrosophic set under posobolity degree when every iv-NHSS given posobolity degree
in [0; 1]. Based on what was mentioned above and what was mentioned in these previous studies, the main
contributions that were given to this work as following:

1.Set up piv-NHSM to merge both iv-NSMs and HSS with the probability degree.

2. Explainall the basic set operations on piv-NHSM and show all numerical examples.
3. Try to Introduce some mathematical properties of all set operations .
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4.Build an algorithm to solve a decision-making problem based on piv-NHSMs.
5. Define the Correlation Coefficient for two piv-NHSSs and build a one example to show its work.
6.Build an algorithm to solve a decision-making problem based on Correlation Coefficient for two piv-NHSSs.

Figure 1: Represents of paper organization.

Creating correlation coefficients based on piv-NHSS is necessary for dealing with the environment mentioned
before. In contrast to works using fuzzy and intuitionistic hypersoft sets, the constructed piv-NHSS Correla-
tions handle difficulties with uncertainty.

2 Preliminaries

In this part, we revisit some critical definitions and properties for our idea

Definition 2.1. 3 An iv-NS
⌢

Γ on a fixed set Z̈ =
{
z̈1, z̈2, z̈3, ..., z̈n

}
is stated as

⌢

Γ (z̈n) = ⟨†T (z̈n) , †I (z̈n) , †F (z̈n)⟩
where †T (z̈n) =

〈[
†lT (z̈n) , †uT (z̈n)

]〉
,†I (z̈n) =

〈[
†lI (z̈n) , †uI (z̈n)

]〉
and †F (z̈n) =

〈[
†lF (z̈n) , †uF (z̈n)

]〉
re-

spectively, with the condition 0 ≤ †lT (z̈n) + †lI (z̈n) + †lF (z̈n) ≤ 3 and 0 ≤ †uT (z̈n) + †uI (z̈n) + †uF (z̈n) ≤ 3.
Here the terms †lT (z̈n) , †lI (z̈n) , †lF (z̈n) , †uT (z̈n) , †uI (z̈n) , †uF (z̈n) are declared as lower and upper three NS-
memberships.

Definition 2.2. 19 Let Z̈ =
{
z̈1, z̈2, z̈3, ..., z̈n

}
be a non-empty softhyper fixed set and Λ1,Λ2,Λ3, ...,Λn be

sets of defferent traits that have n ≥ 1 sub-value and Ω =
n∏

i=1

Λi such that every Λi = {η1, η2, η3, ..., ηr} for

i = 1, 2, 3, ..., r Then a piv-NHSS
⌢

Υµ̂ define over a non-empty hypersoft fixed set
(
Z̈,Ω

)
as the following

form (Ω, †Ω) where

(i) †Ω : Ω → iv −NS × IẐ such that it define as

†Ω (η) =

{(
z̈n

⌢
Γ(η)(z̈n)

, µ̂ (η) (z̈n)

)
: z̈n ∈ Z̈ & η ∈ Ω

}
and

⌢

Γ (η) (z̈n) = ⟨†T (η) (z̈n) , †I (η) (z̈n) , †F (η) (z̈n)⟩
where †T (η) (z̈n) =

〈[
†lT (η) (z̈n) , †uT (η) (z̈n)

]〉
,†I (η) (z̈n) =

〈[
†lI (η) (z̈n) , †uI (η) (z̈n)

]〉
and †F (η) (z̈n) =〈[

†lF (η) (z̈n) , †uF (η) (z̈n)
]〉

respectively, with the condition 0 ≤ †lT (η) (z̈n) + †lI (η) (z̈n) + †lF (η) (z̈n) ≤ 3
and 0 ≤ †uT (η) (z̈n) + †uI (η) (z̈n) + †uF (η) (z̈n) ≤ 3.

(ii)IẐ : Ẑ → [0, 1] and µ̂ (η) (z̈n) ∈ IẐ denotes to the degree of possibility of z̈n ∈ Ẑ in
⌢

Υ(z̈n).

Based on the above a piv-NHSS
⌢

Υµ̂ define over a non-empty hypersoft fixed set
(
Z̈,Ω

)
as the following

structure:

⌢

Υµ̂ =
{(

η,
{(

z̈n

Γ(η)(z̈n) , µ̂ (η) (z̈n)
)
: z̈n ∈ Z̈

})
η ∈ Ω

}
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3 Possibility interval-valued neutrosophic hypersoft matrix (piv-NHSM)

This part explores the characterization of a possibility interval-valued neutrosophic hypersoft matrix (piv-
NHSM) with its basic set operations and some examples for all its operations.

Definition 3.1. Assume that Z̈ =
{
z̈1, z̈2, z̈3, ..., z̈n

}
be a nonempty unvirsal set and Ω =

n∏
i=1

Λi such that

every Λi = {η1, η2, η3, ..., ηr} for i = 1, 2, 3, ..., r Then a piv-NHSM
⌢

Υµ̂ define as a matrix over a non-empty

universal set
(
Z̈,Ω

)
as the following form

(
⌢

Υ
1

µ̂

)
m×n

=

((
†1T

)
1×1

,
(
†1I
)
1×1

,
(
†1F

)
1×1

, µ̂1×1

)
· · ·

((
†1T

)
1×m

,
(
†1I
)
1×m

,
(
†1F

)
1×m

, µ̂1×m

)((
†1T

)
2×1

,
(
†1I
)
2×1

,
(
†1F

)
2×1

, µ̂2×1

) ((
†1T

)
2×m

,
(
†1I
)
2×m

,
(
†1F

)
2×m

, µ̂2×2

)
...

...((
†1T

)
n×1

,
(
†1I
)
n×1

,
(
†1F

)
n×1

, µ̂n×1

) ((
†1T

)
n×m

,
(
†1I
)
n×m

,
(
†1F

)
n×m

, µ̂n×m

)


m×n

where (
†1T

)
n×m

=

[(
†1,lT

)
n×m

,
(
†1,uT

)
n×m

]
(
†1I
)
n×m

=

[(
†1,lI

)
n×m

,
(
†1,uI

)
n×m

]
(
†1F

)
n×m

=

[(
†1,lF

)
n×m

,
(
†1,uF

)
n×m

]
Example 3.2. Consder the example given in19 and consider the piv-NHS given as following
⌢

Υµ̂ (η1) =
{(

z̈1

⟨[0.1,0.7],[0.6,0.8],[0.4,0.4]⟩ , 0.4
)
,
(

z̈2

⟨[0.5,0.6],[0.3,0.5],[0.3,0.8]⟩ , 0.7
)
,(

z̈3

⟨[0.2,0.4],[0.1,0.3],[0.5,0.6]⟩ , 0.6
)
,
(

z̈4

⟨[0.3,0.6],[0.4,0.5],[0.2,0.5]⟩ , 0.8
)}

⌢

Υµ̂ (η2) =
{(

z̈1

⟨[0.3,0.6],[0.2,0.5],[0.2,0.3]⟩ , 0.2
)
,
(

z̈2

⟨[0.4,0.7],[0.4,0.8],[0.1,0.5]⟩ , 0.5
)
,(

z̈3

⟨[0.6,0.6],[0.3,0.7],[0.5,0.6]⟩ , 0.3
)
,
(

z̈4

⟨[0.5,0.7],[0.8,0.6],[0.7,0.7]⟩ , 0.6
)}

⌢

Υµ̂ (η3) =
{(

z̈1

⟨[0.1,0.8],[0.7,0.9],[0.6,0.8]⟩ , 0.3
)
,
(

z̈2

⟨[0.2,0.4],[0.6,0.9],[0.5,0.7]⟩ , 0.5
)
,(

z̈3

⟨[0.4,0.7],[0.8,0.8],[0.6,0.6]⟩ , 0.9
)
,
(

z̈4

⟨[0.5,0.5],[0.7,0.7],[0.3,0.3]⟩ , 0.5
)}

⌢

Υµ̂ (η4) =
{(

z̈1

⟨[0.1,0.8],[0.5,0.7],[0.2,0.2]⟩ , 0.4
)
,
(

z̈2

⟨[0.1,0.1],[0.6,0.6],[0.7,0.8]⟩ , 0.1
)
,(

z̈3

⟨[0.6,0.6],[0.7,0.7],[0.9,0.9]⟩ , 0.5
)
,
(

z̈4

⟨[0.2,0.3],[0.4,0.8],[0.4,0.7]⟩ , 0.6
)}

The piv-NHSS is formed as

⌢

Υµ̂ =

{
⌢

Υµ̂ (η1) =
{(

z̈1

⟨[0.2,0.5],[0.1,0.3],[0.4,0.4]⟩ , 0.4
)
,
(

z̈2

⟨[0.5,0.6],[0.3,0.5],[0.3,0.8]⟩ , 0.7
)
,(

z̈3

⟨[0.2,0.4],[0.1,0.3],[0.5,0.6]⟩ , 0.6
)
,
(

z̈4

⟨[0.3,0.6],[0.4,0.5],[0.2,0.5]⟩ , 0.8
)}

⌢

Υµ̂ (η2) =
{(

z̈1

⟨[0.3,0.6],[0.2,0.5],[0.2,0.3]⟩ , 0.2
)
,
(

z̈2

⟨[0.4,0.7],[0.4,0.8],[0.1,0.5]⟩ , 0.5
)
,
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(
z̈3

⟨[0.6,0.6],[0.3,0.7],[0.5,0.6]⟩ , 0.3
)
,
(

z̈4

⟨[0.5,0.7],[0.8,0.6],[0.7,0.7]⟩ , 0.6
)}

⌢

Υµ̂ (η3) =
{(

z̈1

⟨[0.1,0.8],[0.7,0.9],[0.6,0.8]⟩ , 0.3
)
,
(

z̈2

⟨[0.2,0.4],[0.6,0.9],[0.5,0.7]⟩ , 0.5
)
,(

z̈3

⟨[0.4,0.7],[0.8,0.8],[0.6,0.6]⟩ , 0.9
)
,
(

z̈4

⟨[0.5,0.5],[0.7,0.7],[0.3,0.3]⟩ , 0.5
)}

⌢

Υµ̂ (η4) =
{(

z̈1

⟨[0.1,0.8],[0.5,0.7],[0.2,0.2]⟩ , 0.4
)
,
(

z̈2

⟨[0.1,0.1],[0.6,0.6],[0.7,0.8]⟩ , 0.1
)
,(

z̈3

⟨[0.6,0.6],[0.7,0.7],[0.9,0.9]⟩ , 0.5
)
,
(

z̈4

⟨[0.2,0.3],[0.4,0.8],[0.4,0.7]⟩ , 0.6
)}}

Furthermore, the values mentioned above can be given as a matrix as follows:

⌢
Υ µ̂ =


Ω/Z̈ z̈1 z̈2 z̈3 z̈4

η1 (⟨[.2, .5] , [.1, .3] , [.4, .4]⟩ , .4) (⟨[.5, .6] , [.3, .5] , [.3, .8]⟩ , .7) (⟨[.2, .4] , [.1, .3] , [.5, .6]⟩ , .6) (⟨[.3, .6] , [.4, .5] , [.2, .5]⟩ , .8)
η2 (⟨[.3, .6] , [.2, .5] , [.2, .3]⟩ , .2) (⟨[.4, .7] , [.4, .8] , [.1, .5]⟩ , .5) (⟨[.6, .6] , [.3, .7] , [.5, .6]⟩ , .3) (⟨[.5, .7] , [.6, .8] , [.7, .7]⟩ , .6)

η3
η4

(⟨[.1, .8] , [.7, .9] , [.6, .8]⟩ , .3)
(⟨[.1, .8] , [.5, .7] , [.2, .2]⟩ , .4)

(⟨[.2, .4] , [.6, .9] , [.5, .7]⟩ , .5)
(⟨[.1, .1] , [.6, .6] , [.7, .8]⟩ , .1)

(⟨[.4, .7] , [.8, .8] , [.6, .6]⟩ , .9)
(⟨[.6, .6] , [.7, .7] , [.9, .9]⟩ , .5)

(⟨[.5, .5] , [.7, .7] , [.3, .3]⟩ , .5)
(⟨[.2, .3] , [.4, .8] , [.4, .7]⟩ , .6)


4×4

Definition 3.3. (piv-NHS-null-matrex) A piv-NHSM
(

⌢

Υ
1

µ̂1

)
m×n

on
(
Z̈,Ω

)
is said to be piv-NHS-null-

matrex and denotes
(
Φ̂0

µ̂0

)
m×n

and its given as following(
⌢

Υ
1

µ̂1 (η) (ẑ)

)
m×n

= ([0, 0] , [0, 0] , [0, 0] , 0)m×n

.

Example 3.4. If
(
Φ̂0

µ̂0

)
2×2

given as following matrix:

(
Φ̂0

µ̂0

)
2×2

=

(
(⟨[0.0] , [0.0] , [0.0]⟩ , 0) (⟨[0.0] , [0.0] , [0.0]⟩ , 0)
(⟨[0.0] , [0.0] , [0.0]⟩ , 0) (⟨[0.0] , [0.0] , [0.0]⟩ , 0)

)
2×2

Then here
(
Φ̂0

µ̂0

)
2×2

named piv-NHS-null-matrex.

Definition 3.5. (piv-NHS-absolute-matrex) A piv-NHSM
(

⌢

Υ
1

µ̂1

)
m×n

on
(
Z̈,Ω

)
is said to be piv-NHS-

absolute-matrex and denotes
(
Φ̂1

µ̂1

)
m×n

and its given as following(
⌢

Υ
1

µ̂1 (η) (ẑ)

)
m×n

= ([1, 1] , [1, 1] , [1, 1] , 1)m×n

.

Definition 3.6. (piv-NHS-absolute set) A piv-NHSS
⌢

Υ
1

µ̂1 on
(
Z̈,Ω

)
is said to be piv-NHS-nullset and de-

notes
⌢

Φ
1

µ̂1 if
⌢

Υ
1

µ̂ (η) (z̈
n) = ([1, 1] , [1, 1] , [1, 1]) and for possibility membership part µ̂1 (η) (z̈n) = 1.

Example 3.7. If
(
Φ̂1

µ̂1

)
2×2

given as following matrix:

(
Φ̂1

µ̂1

)
2×2

=

(
(⟨[1, 1] , [1, 1] , [1, 1]⟩ , 1) (⟨[1, 1] , [1, 1] , [1, 1]⟩ , 1)
(⟨[1, 1] , [1, 1] , [1, 1]⟩ , 1) (⟨[1, 1] , [1, 1] , [1, 1]⟩ , 1)

)
2×2

Then here
(
Φ̂1

µ̂1

)
2×2

named piv-NHS-absolute-matrex.

Definition 3.8. (Complement in piv-NHSMs) A piv-NHSM
⌢

Υµ̂ on
(
Z̈,Ω

)
have a complement in the fol-

lowing form
⌢

Υ
c

µ̂cand define as

⌢

Υ
c

µ̂c =
{(

η,
{(

z̈n

†c(η)(z̈n) , µ̂
c (η) (z̈n)

)
: z̈n ∈ Z̈

})
η ∈ Ω

}
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where
†cT (η) (z̈n) =

〈[
†lF (η) (z̈n) , †uF (η) (z̈n)

]〉
, †cI (η) (z̈n) =

〈[
1− †uI (η) (z̈n) , 1− †lI (η) (z̈n)

]〉
and

†cF (η) (z̈n) =
〈[
†lT (η) (z̈n) , †uT (η) (z̈n)

]〉
and for possibility fuzzy membership part µ̂c (η) (z̈n) = 1− µ̂ (η) (z̈n) .

Example 3.9. Consider the piv-NHSM that given in example 3.2
(

⌢

Υ
1

µ̂1

)c

given as following:

(
⌢

Υ
1

µ̂1

)
=

{(
z̈1

⟨[0.1, 0.7] , [0.6, 0.8] , [0.4, 0.4]⟩
, 0.4

)
,

(
z̈2

⟨[0.5, 0.6] , [0.3, 0.5] , [0.3, 0.8]⟩
, 0.7

)}

then the
(

⌢

Υ
1

µ̂1

)c

is given based on above definition as following:

(
⌢

Υ
1

µ̂1

)c

=

{(
z̈1

⟨[0.4, 0.4] , [0.2, 0.4] , [0.1, 0.7]⟩
, 0.6

)
,

(
z̈2

⟨[0.3, 0.8] , [0.4, 0.5] , [0.5, 0.6]⟩
, 0.3

)}

4 Application of piv-NHSM in the most qualified employee selection

In this section, we deal with one of the daily life DM scenarios, specifically the process of selecting a competent
employee to fill a position, by presenting a multi-step algorithm, which is an extension or expansion of the
algorithm presented in.?

4.1 Cuse studty

Jobs that are open for application are publicised by the HR department. Given the high volume of appli-
cants, it is necessary to establish an expert committee to evaluate each candidate’s credentials and select
the best fit for the open positions. Consequently, in order to use our suggested model to examine all can-
didates’ data, piv-NHSS, we assume that the fixed set contains four candidates, i.e Z̈ =

{
z̈1, z̈2, z̈3, z̈4

}
with members of the attributes (Criteria) i.e η1 = Academic Certificate,η2 = English language level and
η3 = Computer skills, these attributes (Criteria) having their sub-attribute values given as following: Λ1 =
{η1,1 = Diploma, η1,2 = BA}, Λ2 = {η2,1 = intermediate, η2,2 = High}, Λ2 = {η3,1 = High} then
Ω = Λ1×Λ2×Λ3 ={η1, η2, η3, η4} where every component ηi has a 3-tuple entity. Then accordingly, a com-
mittee was formed to interview each candidate individually, and the committee adopted the following steps to
accomplish its work:

Step 1. Analyze the information of each candidate based on piv-NHSS
⌢

Υµ̂ are given as following:
⌢

Υµ̂ =

{
⌢

Υµ̂ (η1) =
{(

z̈1

⟨[0.2,0.5],[0.1,0.3],[0.4,0.4]⟩ , 0.4
)
,
(

z̈2

⟨[0.5,0.6],[0.3,0.5],[0.3,0.8]⟩ , 0.7
)
,(

z̈3

⟨[0.2,0.4],[0.1,0.3],[0.5,0.6]⟩ , 0.6
)
,
(

z̈4

⟨[0.3,0.6],[0.4,0.5],[0.2,0.5]⟩ , 0.8
)}

⌢

Υµ̂ (η2) =
{(

z̈1

⟨[0.3,0.6],[0.2,0.5],[0.2,0.3]⟩ , 0.2
)
,
(

z̈2

⟨[0.4,0.7],[0.4,0.8],[0.1,0.5]⟩ , 0.5
)
,(

z̈3

⟨[0.6,0.6],[0.3,0.7],[0.5,0.6]⟩ , 0.3
)
,
(

z̈4

⟨[0.5,0.7],[0.8,0.6],[0.7,0.7]⟩ , 0.6
)}

⌢

Υµ̂ (η3) =
{(

z̈1

⟨[0.1,0.8],[0.7,0.9],[0.6,0.8]⟩ , 0.3
)
,
(

z̈2

⟨[0.2,0.4],[0.6,0.9],[0.5,0.7]⟩ , 0.5
)
,(

z̈3

⟨[0.4,0.7],[0.8,0.8],[0.6,0.6]⟩ , 0.9
)
,
(

z̈4

⟨[0.5,0.5],[0.7,0.7],[0.3,0.3]⟩ , 0.5
)}

⌢

Υµ̂ (η4) =
{(

z̈1

⟨[0.1,0.8],[0.5,0.7],[0.2,0.2]⟩ , 0.4
)
,
(

z̈2

⟨[0.1,0.1],[0.6,0.6],[0.7,0.8]⟩ , 0.1
)
,(

z̈3

⟨[0.6,0.6],[0.7,0.7],[0.9,0.9]⟩ , 0.5
)
,
(

z̈4

⟨[0.2,0.3],[0.4,0.8],[0.4,0.7]⟩ , 0.6
)}}

Step 2. Represent piv-NHS in matrix form as a following:
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(
⌢
Υ µ̂

)
4×4

=


Ω/Z̈ z̈1 z̈2 z̈3 z̈4

η1 (⟨[.2, .5] , [.1, .3] , [.4, .4]⟩ , .4) (⟨[.5, .6] , [.3, .5] , [.3, .8]⟩ , .7) (⟨[.2, .4] , [.1, .3] , [.5, .6]⟩ , .6) (⟨[.3, .6] , [.4, .5] , [.2, .5]⟩ , .8)
η2 (⟨[.3, .6] , [.2, .5] , [.2, .3]⟩ , .2) (⟨[.4, .7] , [.4, .8] , [.1, .5]⟩ , .5) (⟨[.6, .6] , [.3, .7] , [.5, .6]⟩ , .3) (⟨[.5, .7] , [.6, .8] , [.7, .7]⟩ , .6)

η3
η4

(⟨[.1, .8] , [.7, .9] , [.6, .8]⟩ , .3)
(⟨[.1, .8] , [.5, .7] , [.2, .2]⟩ , .4)

(⟨[.2, .4] , [.6, .9] , [.5, .7]⟩ , .5)
(⟨[.1, .1] , [.6, .6] , [.7, .8]⟩ , .1)

(⟨[.4, .7] , [.8, .8] , [.6, .6]⟩ , .9)
(⟨[.6, .6] , [.7, .7] , [.9, .9]⟩ , .5)

(⟨[.5, .5] , [.7, .7] , [.3, .3]⟩ , .5)
(⟨[.2, .3] , [.4, .8] , [.4, .7]⟩ , .6)


4×4

Step 3. Convert piv-NHS-matrix
(⌢

Υµ̂

)
i×j

to the core matrix
⇀

Πi×j as follows:

⇀

Πi×j =


⌢

θ ϖ̂1
(η1)

⌢

θ ϖ̂1
(η2) · · ·

⌢

θ ϖ̂1
(ηj)

⌢

θ ϖ̂2 (η1)
⌢

θ ϖ̂2 (η1) · · ·
⌢

θ ϖ̂2 (ηj)
...

...
. . .

...
⌢

θ ϖ̂i
(η1)

⌢

θ ϖ̂i
(η2) · · ·

⌢

θ ϖ̂i
(ηj)


Where

⌢

θϖi (ηj) =

([
†lℜ (ηj) + †uℜ (ηj)

2

]
+

[
†lℜ (ηj) + †uℜ (ηj)

2

]
+

[
†lℜ (ηj) + †uℜ (ηj)

2

]
× µ̂ (ηj)

)

Step 4. Find out all ζMax (ηj) (Max. limit), ζMin (ηj) (Min. limit), and c (scoring value) of all
⌢

ξ (ηj) as
following format:

ζMax (ηj) =
s∑

i=1

(
1−

⌢

θϖi
(ηj)

)2

, ζMin (ηj) =
s∑

i=1

(⌢

θϖi
(ηj)

)2

⌢

ξ (ηj) = ζMax (ηj) + ζMin (ηj)

Step 5. The optimum selection is a maximum score of ∂ (ηj) where

∂k = Max
{⌢

ξ (η1) ,
⌢

ξ (η1) , ..
⌢

ξ (ηj)
}

.

Now for the purpose of implementing the algorithm, starting from step 3.

⇀

Π4×4 =


.12 .52 .81 .74
.23 .28 .64 .46
.41 .71 .65 .91
.32 .64 .69 .84


4×4

Now, Table 1 illustrates step 4.

Table 1: The values of ζMax (ηj),ζMin (ηj) and ∂k

z1 z2 z3 z4

ζMax (ηj) 2.177 2.764 3.843 4.008
ζMin (ηj) 0.337 0.527 0.674 0.876

∂k 2.514 3.291 4.517 4.884

Sum(Z̈i) = 4.884

The optimal choice is z4.
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5 Correlation Coefficient for piv-NHSSs

Now in this section, we will explain and know the techniques of correlation coefficient for piv-NHSSs.

Definition 5.1. (Correlation Coefficient for piv-NHSSs) Let
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 be two piv-NHSSs. Then the

correlation coefficient of Civp−NHSs between
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 given as following formalh:

Civp−NHSs

(
⌢

Υ
1

µ̂1 ,
⌢

Υ
2

µ̂2

)
= 1

6

(
CT

(
⌢

Υ
1

T,
⌢

Υ
2

T

)
+ CI

(
⌢

Υ
1

I ,
⌢

Υ
2

I

)
+ CF

(
⌢

Υ
1

F,
⌢

Υ
2

F

))
CP

(
µ̂1, µ̂2

)

Where

CT

(
⌢

Υ
1

T,
⌢

Υ
2

T

)
=

1
|Ω|

∑
ηi∈Ω


n∑

j=1

(
†1,lTj

(ηi)−†1,lTj
(ηi)

)(
†2,lTj

(ηi)−†2,lTj
(ηi)

)
+
(
†1,uTj

(ηi)−†1,uTj
(ηi)

)(
†2,uℜj

(ηi)−†2,uTj
(ηi)

)
√

n∑
j=1

(
†1,lTj

(ηi)−†1,lTj
(ηi)

)2 n∑
j=1

(
†2,lTj

(ηi)−†2,lTj
(ηi)

)2
+

n∑
j=1

(
†1,uTj

(ηi)−†1,uTj
(ηi)

)2 n∑
j=1

(
†2,uTj

(ηi)−†2,uTj
(ηi)

)2



CI

(
⌢

Υ
1

I ,
⌢

Υ
2

I

)
=

1
|Ω|

∑
ηi∈Ω


n∑

j=1

(
†1,lIj

(ηi)−†1,lIj
(ηi)

)(
†2,lIj

(ηi)−†2,lℜj
(ηi)

)
+
(
†1,uIj

(ηi)−†1,uIj
(ηi)

)(
†2,uIj

(ηi)−†2,uIj
(ηi)

)
√

n∑
j=1

(
†1,lIj

(ηi)−†1,lIj
(ηi)

)2 n∑
j=1

(
†2,lIj

(ηi)−†2,lIj
(ηi)

)2
+

n∑
j=1

(
†1,uIj

(ηi)−†1,uIj
(ηi)

)2 n∑
j=1

(
†2,uIj

(ηi)−†2,uIj
(ηi)

)2


CF

(
⌢

Υ
1

F,
⌢

Υ
2

F

)
=

1
|Ω|

∑
ηi∈Ω


n∑

j=1

(
†1,lFj

(ηi)−†1,lFj
(ηi)

)(
†2,lFj

(ηi)−†2,lℜj
(ηi)

)
+
(
†1,uFj

(ηi)−†1,uFj
(ηi)

)(
†2,uFj

(ηi)−†2,uFj
(ηi)

)
√

n∑
j=1

(
†1,lFj

(ηi)−†1,lFj
(ηi)

)2 n∑
j=1

(
†2,lFj

(ηi)−†2,lFj
(ηi)

)2
+

n∑
j=1

(
†1,uFj

(ηi)−†1,uFj
(ηi)

)2 n∑
j=1

(
†2,uFj

(ηi)−†2,uFj
(ηi)

)2



CP

(
µ̂1, µ̂2

)
=

1

|Ω|
∑
ηi∈Ω


n∑

j=1

(
µ̂1 (ηi)− µ̂1 (ηi)

)(
µ̂2 (ηi)− µ̂2 (ηi)

)
√

n∑
j=1

(
µ̂1 (ηi)− µ̂1 (ηi)

)2 n∑
j=1

(
µ̂2 (ηi)− µ̂2 (ηi)

)2


and

†1,lTj
(ηi) =

1

|Z̈|
n∑

j=1

†1,lTj
(ηi) ,†1,uTj

(ηi) =
1

|Z̈|
n∑

j=1

†1,uTj
(ηi) ,

†1,lIj (ηi) =
1

|Z̈|
n∑

j=1

†1,lIj (ηi) ,†1,uIj (ηi) =
1

|Z̈|
n∑

j=1

†1,uIj (ηi) ,

†1,lFj
(ηi) =

1

|Z̈|
n∑

j=1

†1,lFj
(ηi) ,†1,uFj

(ηi) =
1

|Z̈|
n∑

j=1

†1,uFj
(ηi) ,

µ1 (ηi) =
1

|Z̈|
n∑

j=1

µ1 (ηi) ,µ2 (ηi) =
1

|Z̈|
n∑

j=1

µ2 (ηi) .
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Proposition 5.2. Let
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 be two piv-NHSSs. Then the correlation coefficient of Civp−NHSs between
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 carry out the next properties:

(i.) Civp−NHSs

(
⌢

Υ
1

µ̂1 ,
⌢

Υ
2

µ̂2

)
= Civp−NHSs

(
⌢

Υ
2

µ̂2 ,
⌢

Υ
1

µ̂1

)
.

(ii.) If
⌢

Υ
1

µ̂1 =
⌢

Υ
2

µ̂2 then Civp−NHSs

(
⌢

Υ
1

µ̂1 ,
⌢

Υ
2

µ̂2

)
= 1.

(iii.)
∣∣∣∣Civp−NHSs

(
⌢

Υ
1

ℜ,
⌢

Υ
1

ℜ

)∣∣∣∣ ≤ 1.

Proof. (i.) By definition (111), we have

Civp−NHSs

(
⌢

Υ
1

µ̂1 ,
⌢

Υ
2

µ̂2

)
= 1

6

(
CT

(
⌢

Υ
1

T,
⌢

Υ
2

T

)
+ CI

(
⌢

Υ
1

I ,
⌢

Υ
2

I

)
+ CF

(
⌢

Υ
1

F,
⌢

Υ
2

F

))
CP

(
µ̂1, µ̂2

)
where for

T-term, then CT

(
⌢

Υ
1

T,
⌢

Υ
2

T

)
=

1
|Ω|

∑
ηi∈Ω


n∑

j=1

(
†1,lTj

(ηi)−†1,lTj
(ηi)

)(
†2,lTj

(ηi)−†2,lTj
(ηi)

)
+
(
†1,uTj

(ηi)−†1,uTj
(ηi)

)(
†2,uTj

(ηi)−†2,uTj
(ηi)

)
√

n∑
j=1

(
†1,lTj

(ηi)−†1,lTj
(ηi)

)2 n∑
j=1

(
†2,lTj

(ηi)−†2,lTj
(ηi)

)2
+

n∑
j=1

(
†1,uTj

(ηi)−†1,uTj
(ηi)

)2 n∑
j=1

(
†2,uTj

(ηi)−†2,uTj
(ηi)

)2



= 1
|Ω|

∑
ηi∈Ω


n∑

j=1

(
†2,lTj

(ηi)−†2,lTj
(ηi)

)(
†1,lTj

(ηi)−†1,lTj
(ηi)

)
+
(
†2,uTj

(ηi)−†2,uTj
(ηi)

)(
†1,uTj

(ηi)−†1,uTj
(ηi)

)
√

n∑
j=1

(
†2,lTj

(ηi)−†2,lTj
(ηi)

)2 n∑
j=1

(
†1,lTj

(ηi)−†1,lTj
(ηi)

)2
+

n∑
j=1

(
†2,uTj

(ηi)−†2,uTj
(ηi)

)2 n∑
j=1

(
†1,uTj

(ηi)−†1,uTj
(ηi)

)2


= CT

(
⌢

Υ
2

T,
⌢

Υ
1

T

)
and for I-term and F-term same then we get the point (i).

Example 5.3. Consider the two piv-NHSs
⌢

Υ
1

µ̂1

⌢

Υ
2

µ̂2 given as following:

⌢

Υ
1

µ̂1 =

{(
z̈1

⟨[0.2, 0.5] , [0.1, 0.3] , [0.4, 0.4]⟩
, 0.4

)
,

(
z̈2

⟨[0.3, 0.6] , [0.4, 0.5] , [0.2, 0.5]⟩
, 0.7

)}
and

⌢

Υ
2

µ̂2 =

{(
z̈1

⟨[0.4, 0.8] , [0.1, 0.1] , [0.2, 0.3]⟩
, 0.7

)
,

(
z̈2

⟨[0.7, 0.7] , [0.2, 0.2] , [0.1, 0.3]⟩
, 0.9

)}

Then the Civp−NHSs

(
⌢

Υ
1

µ̂1 ,
⌢

Υ
2

µ̂2

)
= 0.7436

5.1 Aplication on piv-NHSSs using Correlation Coefficient for piv-NHSSs

In this special part we will present a practical algorithm for selecting the ideal employee as in the fourth part
of this article, here we will present a new algorithm based on matrix issues for piv-NHSSs. This algorithm is
given as in the following steps:

Step 1. Analyze the information of each candidate based on piv-NHSS
⌢

Υ
1

µ̂1 . :

Step 2. Analyzing piv-NSHSs
⌢

Υ
2

µ̂2 second model for another expert.
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Step 3. Calculate the value of Correlation Coefficient between
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 .

Step 4. Ranking the value of Correlation Coefficient between every candidates in
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 .

Step 5. Select the maximum value for Correlation Coefficient between every candidates in
⌢

Υ
1

µ̂1 and
⌢

Υ
2

µ̂2 .

Now to implement this algorithm effectively, we start by activating the first and second steps as follows:

⌢

Υ
1

µ̂ =

{
⌢

Υµ̂ (η1) =
{(

z̈1

⟨[0.2,0.5],[0.1,0.3],[0.4,0.4]⟩ , 0.4
)
,
(

z̈2

⟨[0.5,0.6],[0.3,0.5],[0.3,0.8]⟩ , 0.7
)
,(

z̈3

⟨[0.2,0.4],[0.1,0.3],[0.5,0.6]⟩ , 0.6
)
,
(

z̈4

⟨[0.3,0.6],[0.4,0.5],[0.2,0.5]⟩ , 0.8
)}

⌢

Υµ̂ (η2) =
{(

z̈1

⟨[0.3,0.6],[0.2,0.5],[0.2,0.3]⟩ , 0.2
)
,
(

z̈2

⟨[0.4,0.7],[0.4,0.8],[0.1,0.5]⟩ , 0.5
)
,(

z̈3

⟨[0.6,0.6],[0.3,0.7],[0.5,0.6]⟩ , 0.3
)
,
(

z̈4

⟨[0.5,0.7],[0.8,0.6],[0.7,0.7]⟩ , 0.6
)}

⌢

Υµ̂ (η3) =
{(

z̈1

⟨[0.1,0.8],[0.7,0.9],[0.6,0.8]⟩ , 0.3
)
,
(

z̈2

⟨[0.2,0.4],[0.6,0.9],[0.5,0.7]⟩ , 0.5
)
,(

z̈3

⟨[0.4,0.7],[0.8,0.8],[0.4,0.8]⟩ , 0.9
)
,
(

z̈4

⟨[0.1,0.2],[0.7,0.7],[0.3,0.3]⟩ , 0.4
)}

⌢

Υµ̂ (η4) =
{(

z̈1

⟨[0.1,0.8],[0.2,0.6],[0.2,0.2]⟩ , 0.4
)
,
(

z̈2

⟨[0,0.7],[0.6,0.6],[0.3,0.3]⟩ , 0.2
)
,(

z̈3

⟨[0.6,0.6],[0.7,0.7],[0.6,0.9]⟩ , 0.5
)
,
(

z̈4

⟨[0.2,0.3],[0.4,0.4],[0.3,0.7]⟩ , 0.8
)}}

and
⌢

Υ
2

µ̂ =

{
⌢

Υµ̂ (η1) =
{(

z̈1

⟨[0.2,0.5],[0.1,0.3],[0.4,0.4]⟩ , 0.4
)
,
(

z̈2

⟨[0.5,0.6],[0.3,0.5],[0.3,0.8]⟩ , 0.7
)
,(

z̈3

⟨[0.2,0.4],[0.1,0.3],[0.5,0.6]⟩ , 0.6
)
,
(

z̈4

⟨[0.3,0.6],[0.4,0.5],[0.2,0.8]⟩ , 0.6
)}

⌢

Υµ̂ (η2) =
{(

z̈1

⟨[0.3,0.6],[0.2,0.5],[0.1,0.3]⟩ , 0.8
)
,
(

z̈2

⟨[0.4,0.4],[0.4,0.7],[0.1,0.5]⟩ , 0.9
)
,(

z̈3

⟨[0.6,0.6],[0.3,0.7],[0.1,0.6]⟩ , 0.3
)
,
(

z̈4

⟨[0.2,0.7],[0.8,0.6],[0.3,0.8]⟩ , 0.5
)}

⌢

Υµ̂ (η3) =
{(

z̈1

⟨[0.1,0.8],[0.7,0.9],[0.6,0.8]⟩ , 0.3
)
,
(

z̈2

⟨[0.2,0.4],[0.6,0.9],[0.5,0.7]⟩ , 0.5
)
,(

z̈3

⟨[0.4,0.7],[0.8,0.8],[0.6,0.6]⟩ , 0.9
)
,
(

z̈4

⟨[0.5,0.5],[0.7,0.7],[0.3,0.3]⟩ , 0.5
)}

⌢

Υµ̂ (η4) =
{(

z̈1

⟨[0.1,0.8],[0.5,0.7],[0.2,0.2]⟩ , 0.4
)
,
(

z̈2

⟨[0.1,0.1],[0.6,0.6],[0.7,0.8]⟩ , 0.1
)
,(

z̈3

⟨[0.6,0.6],[0.7,0.7],[0.9,0.9]⟩ , 0.5
)
,
(

z̈4

⟨[0.2,0.3],[0.4,0.8],[0.4,0.7]⟩ , 0.6
)}}

The rest of the steps can be seen in Table 2.
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Table 2: Correlation Coefficient values of piv-NHSSs
⌢

Υ
1

µ̂1 ,
⌢

Υ
2

µ̂2

Z̈iof
⌢

Υ
2

µ̂2/Z̈iof
⌢

Υ
1

µ̂1 z1 z2 z3 z4

z1 0.291 0.872 0.761 0.342
z2 0.658 0.327 0.659 0.638
z3 0.542 0.693 0.875 0.351
z4 0.359 0.424 0.632 0.871

Sum(Z̈i) 1.850 2.134 2.927 2.202

As showing in Table 2 we got the best choice, is z̈3.

Conclusion

In this study , through the concept possibility interval valued neutrosophic hyper soft set (abbreviated as
piv-NHSS) which is combined from the hypersoft set (HSS) and interval-valued neutrosophic set under the
posobolity degree and each iv-NHSS is assigned a possibility degree in the interval [0, 1]. Based on this
concept, we presented a more flexible, expanded method for a previous concept named possibility interval
valued neutrosophic hyper soft matrix (piv-NHSM) as a new generalization of piv-NHSS. In this work, we
also present several algebraic operations and also all the mathematical properties associated with this model.
In addition to the above, we have presented a clear algorithm based on the matrix properties of this model,
which has been used to solve one of the multi-property decision-making problems. Finally, the correlation
coefficient for this concept was defined and explained in detail according to an approved mechanism, with a
numerical example provided to illustrate the mechanism of use. Moreover, we developed a new algorithm for
solving the decision-making issue based on the proposed correlation coefficient for piv-NHSS .This concept
can be further developed through work on it in future studies, where it can be linked to many other fuzzy and
algebraic tools. See.20–25
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