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Abstract 

The Rivest–Shamir–Adleman (RSA) cryptosystem is one of the most prevalently utilized public-key cryptographic 

systems in current practice. Prior investigations into vulnerabilities of this cryptosystem have concentrated on 

diminishing the complexity associated with the integer factorization challenge, which is integral to the RSA 

modulus, expressed as 𝑁=𝑝𝑞. Possessing partial knowledge about the least significant digits (LSDs) of both p and 

q is a common assumption attacker’s advantage to enable the polynomial-time factorization of N, ultimately 

undermining the security of RSA. This paper presents a novel heuristic algorithm predicated on the Constraint 

Satisfaction Problem (CSP) principles, which estimates k-LSD pairs of the RSA prime factors, 𝑝 and 𝑞. The 

proposed Generate and Test (GT) and Backtracking with Heuristic Variable Ordering (BHVO) solver guarantees 

polynomial-time factorization of known bits by iteratively refining candidate pairs and eliminating invalid 

combinations through effective constraint propagation. The proposed approach obviates the requirement for 

specialized hardware for side-channel attacks to reveal a portion of 𝑝 and 𝑞. In our results, we have successfully 

estimated up to 5-LSDs of 𝑝 and 𝑞 with a reduced number of iterations and factored 2048 bits, N based on the 

known 4-LSDs of the prime in polynomial time. Our research lays the groundwork for factorization algorithms 

that require partial knowledge of the prime factors. We have highlighted the possible vulnerabilities linked to 

existing RSA key generation techniques. These may make RSA moduli susceptible to the attacks discussed in this 

study and proposed countermeasures to ensure secure prime generation. 

Keywords: RSA cryptosystem; Constraint satisfaction problem; key exposure attacks; Factorization attacks; 

Cryptography; Attack mitigation 

1. Introduction 

The swift progress in computational capabilities and the growing necessity for secure communication have 

rendered the RSA cryptosystem an essential pillar of contemporary cybersecurity. Since its establishment, the RSA 

cryptosystem has been regarded as the most prevalent asymmetric key cryptosystem. Within its key generation 

algorithm, an RSA modulus, 𝑁=𝑝𝑞, is derived where p and q, referred to as RSA primes, are two distinct prime 

numbers such that 𝑝<𝑞<2𝑝 [1]. The security of RSA is fundamentally based on the computational challenge of 

decomposing N into 𝑝 and 𝑞, with large prime numbers selected to guarantee the impracticality of factorization 

within a reasonable duration [2]. Nevertheless, the foundational dependence on the difficulty of factorizing large 

prime numbers has engendered apprehensions regarding the long-term sustainability of this extensively utilized 

algorithm [3], [4]. Should an individual possess the capability to factor these numbers efficiently, they could 

compromise the security of RSA and gain access to confidential information. Similarly, the increasing 
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computational capabilities of conventional computers have made brute-force attacks on RSA more attainable, 

mainly when there is partial information on the prime factors of the modulus N, heightening the associated security 

challenges. As numerous cryptographic frameworks depend on the difficulty of integer factorization [5], [6], the 

investigation of efficient algorithms for prime factorization that surpass existing methodologies or exploit specific 

attributes of the prime factors can exert a significant influence on the current applications of cryptographic 

algorithms that hinge on the complexity of factorization.  

It remains unclear whether the prime factorization problem possesses polynomial computational complexity and, 

consequently, if it belongs to the complexity class P. However, most widely used cryptographic algorithms are 

based on the premise that factorization is a complex problem. Resources that depend on this assumption include 

website certificates and Bitcoin wallets. Moreover, without an explicit lower bound on computational complexity, 

many essential services may become susceptible to security threats in the longer term. Thus, exploring novel 

methods that provide computational benefits is encouraged [7]. 

When there is no knowledge of 𝑝 and 𝑞, the factorization process becomes impractically complex as N increases, 

necessitating exponential time when employing traditional algorithms. Conversely, given some partial knowledge 

regarding p and q, the complexity of factorisation can be significantly reduced, and a solution may be obtained in 

polynomial time, even for a large RSA modulus [8]. This principle has important implications for the security of 

cryptographic systems. For example, suppose certain aspects of 𝑝 and 𝑞, such as their most significant digits 

(MSDs) or particular modular relationships, are disclosed or guessed. In that case, the factorisation challenge can 

shift from being computationally prohibitive to manageable within reasonable timeframes. This vulnerability 

underscores a vital aspect of cryptographic design: safeguarding the prime numbers and any partial information 

about them. 

Historically, the exposure of partial knowledge regarding 𝑝 and 𝑞 has mainly depended on side-channel attacks, 

which take advantage of physical emissions or processing behaviours in specific hardware setups [9], [10], [11], 

[12], [13], [14]. These methods demand precise instruments and specialized equipment, often involving 

complicated experimental setups. As a result, their practical implementation is cumbersome and highly dependent 

on the particular device being targeted. 

The current study proposes a new heuristic algorithm based on the CSP that estimates a portion of 𝑝 and 𝑞 

without relying on side-channel information. This method provides a software-oriented solution that is adaptable, 

scalable, and free from hardware constraints. This method extends the scope of prime factorization techniques 

through computational heuristics, thereby addressing the limitations of traditional side-channel methods. 

This research contributes to the field of cryptology as follows; 

 Given RSA modulus 𝑁, a new heuristic CSP-based algorithm that estimates the LSDs of the RSA prime 

factors, 𝑝 and 𝑞. 

 Laying the foundation for factorization algorithms that rely on known-bits prime, eliminating the need for 

specialized hardware devices to conduct side-channel attacks to reveal part of 𝑝 and 𝑞. 

 Highlighting patterns and vulnerabilities in RSA modulus construction that may inform the development of 

more secure key generation practices. 

This study aims to develop a new heuristic algorithm inspired by CSP for estimating the LSDs of RSA prime 

factors. We strive to explore the implications of this additional information on the “known bits prime” factorization 

process in polynomial time. 

This research expands on the idea that having partial knowledge of 𝑝 and 𝑞 may enable the polynomial-time 

factorization of 𝑁. We examine the practical applications and computational implications of utilizing partial prime 

information. The findings show the potential of these methods within cryptanalysis. Strategies within key 

generations to protect against the risk of exposing critical information are also included, together with the necessity 

of enhancing randomness in RSA prime generation to reduce the risks linked to the factorization of known bits 

prime. 

2. Related Work 

Several studies have shown that prime factorization of larger RSA module (exceeding 1024 bits) can be achieved 

with polynomial time complexity. Many of these approaches focus on the assumption that an attacker possesses 

knowledge of several bits of the prime factors 𝑝 and 𝑞, thereby diminishing the difficulty of factoring 𝑁. In [15], 

the authors proposed partial key exposure attacks, positing that if certain bits of the prime numbers are known to 

the adversary, this can facilitate the factorization of 𝑁. They demonstrated that knowing 2/3 of the bits of either 𝑝 
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or 𝑞 is adequate for this purpose. Subsequently, [16] improved upon this finding by reducing the necessary known 

bits to 1/2 using the LLL algorithm. The attack described by Herrmann and May later required that the known bits 

be organized into random blocks [17]. Heninger and Shacham's approach, inspired by the so-called cold boot 

attack, targets memory in electronic chips to recover bits of private keys, assuming those bits are sourced from 

random positions [18]. They successfully executed their attack when 0.57 bits of the primes were known. It is 

important to note that this fraction is significantly lower when assessing the random bits of the RSA private 

exponent, d (specifically, 𝑑𝑝 and 𝑑𝑞 in the context of CRT-RSA). [19]analyse the reconstruction algorithm by 

Heninger and Shacham from a combinatorial point of view.  The algorithm is an innovative brute-force method 

on the total search space of unknown bits of 𝑝 and 𝑞, which prunes the infeasible solutions. However, their 

approach requires some random bits of the primes. In contrast to existing methodologies, [20]leverage 𝑘 number 

of least significant bits (LSBs) from the primes, where 𝑘 is less than, which is a notably small value and factor 𝑁 

up to 2048 bits. 

While the papers present encouraging results, the attacks discussed operate under the assumption of having partial 

knowledge of the bits of 𝑝 and 𝑞 to boost efficiency, requiring particular hardware for side-channel attacks to 

uncover segments of 𝑝 and 𝑞. Such data is generally complicated to access in real-world attack scenarios, making 

attempts to factorize known prime bits impractical. The dependence on hardware for side-channel attacks 

underscores the need for different approaches to infer these values' characteristics. This approach creates new 

opportunities for cryptanalysis that bypass these impractical assumptions, which could improve and optimize the 

effectiveness of algorithms aimed at prime factorization with known bits prime. Our approach builds upon the 

studies of prime factorization with known bits primes (case of LSDs), given the knowledge of only 𝑁 to enhance 

polynomial time factorization in practical settings. 

3. Proposed methodology 

Problem Formulation 

Our method utilizes the column multiplication technique, commonly called long multiplication. In this technique, 

when multiplying multi-digit numbers, we carry out a sequence of single-digit multiplications and subsequently 

combine the outcomes according to their respective place values (refer to Figure 1). For a generalization, for 

multiplying two n-digit balanced numbers, as presented below: 

𝑋 = 𝑝1𝑝2𝑝3 … 𝑝𝑛 
𝑌 = 𝑞1𝑞2𝑞3 … 𝑞𝑛 

Where 𝑝𝑖  and 𝑞𝑗 are the digits of the numbers, 𝑋 and 𝑌 respectively, with 𝑝1 and 𝑞1 being the most significant 

digits (leftmost) and 𝑝𝑛 and 𝑞𝑛 being the least significant digits (rightmost). The general form for a partial product 

is 𝑌𝑗  × 𝑋, shifted (𝑛 − 𝑗) places to the left. Ultimately, the final product is obtained by summing all the partial 

products column by column, progressing from right to left. Thus, 

Let X represent an (𝑛 + 1)-digit number: 

𝑋 = 𝑝𝑛 . 10𝑛 + 𝑝𝑛−1 . 10𝑛−1 + ⋯ + 𝑝1 . 101 + 𝑝0 . 100 

Let Y represent an (𝑚 + 1)-digit number: 

𝑌 = 𝑞𝑚 . 10𝑚 + 𝑞𝑚−1 . 10𝑚−1 + ⋯ + 𝑞1 . 101 + 𝑞0 . 100 

Where 𝑝𝑖  and 𝑞𝑗 are the digits of 𝑋 and 𝑌 respectively.  

We Compute partial products by multiplying each digit of 𝑋(𝑝𝑖) with each digit of 𝑌(𝑞𝑗), weighted by their 

respective positional values: 

𝑃𝑃𝑖𝑗 =  𝑝𝑖  . 𝑞𝑗  . 10𝑖+𝑗 

Where 𝑃𝑃𝑖𝑗  is the partial product at 𝑖𝑗𝑡ℎ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 

When computing each 𝑃𝑃𝑖𝑗 , if the result of 𝑝𝑖  . 𝑞𝑗 > 9, carry digits are calculated and added to the subsequent 

positional place: 

𝑟𝑖𝑗 = 𝑃𝑃𝑖𝑗  𝑚𝑜𝑑 10 

𝑐𝑖𝑗 = ⌊
𝑃𝑃𝑖𝑗

10
⌋ 
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Where 𝑟𝑖𝑗  is a remainder for the current positional value, and 𝑐𝑖𝑗  is a carry to the next higher positional value. 

Then, add partial products (column-wise) for each positional value. If the sum of any column exceeds 9, compute 

the carry 𝑐 and the remainder 𝑟 as follows: 

𝑐𝑣 = ⌊
𝑠𝑑 𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣

10
⌋, 𝑟𝑣 = (𝑠𝑑  𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣) 𝑚𝑜𝑑 10 

Where 𝑠𝑑 is the sum of digits.  

Add 𝑐𝑣 to the next higher positional value 

The result 𝑅 is the concatenation of the remainders 𝑟𝑣  from all positional values after carry propagation. 

For simplicity, we would limit 𝑋 and 𝑌 to a 4-digit balance number, as shown in Figure 1. 

 

Figure 1. 4-digit balance multiplication process 

When two numbers consist of the same number of digits, as illustrated in Figure 1 (4-digit numbers), the addition 

process reveals a distinct pattern when analysed column by column, resembling a parallelogram shape. The digits 

from the lowest partial product define the base of this parallelogram. At the same time, its sides are created by 

progressively incorporating additional digits as one moves leftward, commencing with a single digit in the unit's 

column and increasing towards the most significant digits. This pattern advances as the count of terms (𝑝𝑖𝑞𝑗) in 

each summation rises linearly until it hits a maximum (see Figure 1), which aligns with the number of digits in the 

multiplicand. Following this peak, there is a symmetrical decrease. This organized approach aids in structuring the 

summation, guaranteeing that each digit is incorporated according to its positional value, ultimately leading to the 

precise result. 

In our attempt to reverse the multiplication process to reconstruct the original multiplicands, 𝑝1 , 𝑝2, 𝑝3, … , 𝑝𝑛 and 

𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛, we formulate the addition of the partial products as a CSP. We assume that the multiplicands, 

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 and 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛 are distinct prime factors of the RSA modulus 𝑁. 

Definition: 

Given 

 set of domain variables 𝑃 =  {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛} and 𝑄 =  {𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛} 

 Finite set of domain values 𝐷 =  {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛}, where 𝑃𝑖 , 𝑄𝑖 ∈ 𝐷𝑖  

 Set of constraints 𝐶 =  {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑛} where each constraint 𝐶𝑖  is a relation defined over a subset of the 

variables 𝑃 𝑎𝑛𝑑 𝑄. 

The objective is to find pairs {𝑝, 𝑞} such that 𝑝 ∈ 𝐷𝑖 , 𝑞 ∈ 𝐷𝑖  for all 𝑖 = 0,1,2,3, … , 𝑛 for each constraint 𝐶𝑖 that 

𝑃 𝑎𝑛𝑑 𝑄 must satisfy. 

Each column (sum of the partial products) can be represented as a constraint (from right to left), 𝑝𝑖𝑞𝑗 as term(s) in 

each constraint, and 𝑅𝑖 as the sum of the column-base final product. The addition of partial products, where the 

number of digits contributing to the columns increases up to a number of terms (𝑝𝑖𝑞𝑗) equal to the number of digits 

in the multiplicand and then decreases, can be used to systematically generate an arbitrary number of columns and 

terms up to the length of the multiplicands. This pattern structure ensures the process can be extended to 

accommodate any number of digits in the multiplicands. To fully recover the multiplicands, we stop where the 

addition process reaches a peak (a constraint 𝐶𝑖  having terms 𝑝𝑖𝑞𝑗 equal to the length of the multiplicands). 

https://doi.org/10.54216/JCIM.160104


 

Journal of Cybersecurity and Information Management (JCIM)                               Vol. 16, No. 01, PP. 38-52, 2025 

42 
DOI: https://doi.org/10.54216/JCIM.160104  

Received: October 24, 2024 Revised: January 11, 2025 Accepted: February 09, 2025 

 

For n-digits number, we formulate the CSP as follows, starting from the LSD (one's column): 

Variables: 𝑝1𝑝2𝑝3 … 𝑝𝑛 and 𝑞1𝑞2𝑞3 … 𝑞𝑛  

Domains: 𝐷 =  {0,1,2, … ,9} Ɐ 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷, where 𝑖 = 1,2,3, … , 𝑛 

Constraints: 

𝑝𝑛𝑞𝑛 𝑚𝑜𝑑 10 = 𝑟𝑛 

(𝑝𝑛−1𝑞𝑛 + 𝑎1) + 𝑝𝑛𝑞𝑛−1 𝑚𝑜𝑑 10 = 𝑟𝑛−1 

(𝑝𝑛−2𝑞𝑛 + 𝑎2) + (𝑝𝑛−1𝑞𝑛−1 + 𝑎3) + 𝑝𝑛𝑞𝑛−2 + 𝑏1 𝑚𝑜𝑑 10 = 𝑟𝑛−2 

(𝑝𝑛−3𝑞𝑛 + 𝑎4) + (𝑝𝑛−2𝑞𝑛−1 + 𝑎5) + (𝑝𝑛−1𝑞𝑛−2 + 𝑎6) + 𝑝𝑛𝑞𝑛−3 + 𝑏2 𝑚𝑜𝑑 10 = 𝑟𝑛−3 
⋮ 

(𝑝1𝑞𝑛 + 𝑎𝑛) + (𝑝2𝑞𝑛−1 + 𝑎𝑛+1) + (𝑝3𝑞𝑛−2 + 𝑎𝑛+2) + ⋯ + 𝑝𝑛𝑞1 + 𝑏𝑛 𝑚𝑜𝑑 10 = 𝑟𝑙 

where, 

𝑝𝑖  are the digits of  𝑝 and 𝑞𝑖 are the digits of  𝑞 

𝑝𝑖𝑞𝑗 are the sum of the product terms 

𝑝𝑛𝑞𝑛 are last digit position of 𝑝 𝑎𝑛𝑑 𝑞 

 𝑟𝑖 are digits of the final product starting from the LSD 𝑟𝑛  

𝑎1is the quotient of  𝑝𝑛𝑞𝑛 𝑚𝑜𝑑 10 (the carry term in the first constraint) 

𝑎2 is the quotient of  (𝑝𝑛−1𝑞𝑛 + 𝑎1) 𝑚𝑜𝑑 10 (the carry of the first term in the second constraint) 

𝑎3 is the quotient of  𝑝𝑛𝑞𝑛−1 𝑚𝑜𝑑 10 (the carry of the second term in the second constraint) 

𝑎4 is the quotient of (𝑝𝑛−2𝑞𝑛 + 𝑎2) 𝑚𝑜𝑑 10 (the carry of the first term in the third constraint) 

𝑎5 is the quotient of (𝑝𝑛−1𝑞𝑛−1 + 𝑎3) 𝑚𝑜𝑑 10 (the carry of the second term in the third constraint) 

𝑎6 is the quotient of 𝑝𝑛𝑞𝑛−2 𝑚𝑜𝑑 10 (the carry of the third term in the third constraint) 

b1 is the first carry of the sum of the terms in the constraint two 

b2 is the second carry of the sum of the terms in the constraint three 

𝑎𝑛 , 𝑎𝑛+1, … , 𝑏𝑛 are the carries propagating to the peak constraint (see Figure 1) 

𝑟𝑙 is the digit position of the final product that corresponds to the peak constraint (see Figure 1) 

Note that each constraint (the sum of the partial products) corresponds to a digit position of the final product, 

which represents the RSA modulus beginning from the LSD (one's column). Additionally, the number of 

constraints is equal to the length of 𝑝 𝑎𝑛𝑑 𝑞 in the situation where we want to recover the entire 𝑝𝑖  and 𝑞𝑗 digits 

position. 

To determine the length of 𝑝 𝑎𝑛𝑑 𝑞, we compute ⌈
𝑘

2
⌉, where 𝑘 is the length of the RSA modulus 𝑁(digit-wise). 

The objective is to find the feasible solution for 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 and 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛 such that, 
𝑞𝑛−𝑗(𝑝𝑖)

𝑞𝑛−𝑗
= 𝑝 at any 

position of 𝑗 and 
𝑁

𝑝
= 𝑞, where 𝑝, 𝑞 ∈ 𝕫+,  𝑛 is the length of 𝑝 𝑎𝑛𝑑 𝑞, 𝑁 is the RSA modulus and 𝑗 = 0,1,2, . . , 𝑛 −

1. 

For simplicity, we formulate values of 𝑝 𝑎𝑛𝑑 𝑞 with 4-digit balanced prime numbers as follows; 

Variables: 𝑝1𝑝2𝑝3𝑝4 and 𝑞1𝑞2𝑞3𝑞4 

Domains: 𝑝1, 𝑝2, 𝑝3, 𝑝4 =  {0,1,2, … ,9} and 𝑞1, 𝑞2, 𝑞3, 𝑞4 =  {0,1,2, … ,9} 

Constraints: 

𝑝4𝑞4 𝑚𝑜𝑑 10 = 𝑟4 

(𝑝3𝑞4 + 𝑎1) + 𝑝4𝑞3 𝑚𝑜𝑑 10 = 𝑟3 
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(𝑝2𝑞4 + 𝑎2) + (𝑝3𝑞3 + 𝑎3) + 𝑝4𝑞2 + 𝑏1 𝑚𝑜𝑑 10 = 𝑟2 

(𝑝1𝑞4 + 𝑎4) + (𝑝2𝑞3 + 𝑎5) + (𝑝3𝑞2 + 𝑎6) + 𝑝4𝑞1 + 𝑏2 𝑚𝑜𝑑 10 = 𝑟1 

Algorithm 1 facilitates the CSP formulation, given the RSA modulus N and the number of digits to estimate. When 

the 𝑘 − 𝐿𝑆𝐷𝑠 is not set, the Algorithm 1 assumes all digit’s position. Otherwise, it returns constraints up to 𝑘 −
𝐿𝑆𝐷𝑠 of 𝑝 𝑎𝑛𝑑 𝑞. 

Algorithm 1: Constraints and Domain Generation 

Input: RSA modulus (string of numeric digits), 𝒌 − 𝑳𝑺𝑫𝒔 

Output: constraints, domains 

1  function Generate_ConstraintsDomains (RSA modulus N, 𝒌 − 𝑳𝑺𝑫𝒔) 

2      If 𝒌 − 𝑳𝑺𝑫𝒔 exists do 

3          𝒏 ← 𝒌 − 𝑳𝑺𝑫𝒔 // Generate constraints up to 𝒌 − 𝑳𝑺𝑫𝒔 

4      else 

5          𝒍𝒆𝒏𝒈𝒕𝒉 ← 𝒍𝒆𝒏(𝑵)  // Get the length of the input digits 

6          𝒏 ← ⌈
𝒍𝒆𝒏𝒈𝒕𝒉 

𝟐
⌉  // Generate constraints up to the length of p and q 

7      end if 

8      R_values ← [int(𝒅) for 𝒅 in 𝑵]  // Parse digits into R values 

9      constraints ← [ ]  // Initialize an empty list to store constraints 

10    domains ← { }  // Initialize an empty dictionary to store domains 

11     for 𝒌 from 𝒏 to 0 step -1 do 

12         equation ← ""  // Initialize an empty string for the current equation 

13         𝒕 ← 1  // Initialize carry index counter 

14         for 𝒊 ← (𝒏 − 𝒌 + 𝟏) to 𝒏 + 𝟏 do 

15             𝒋 ← 𝟐𝒏 − 𝒌 + 𝟏 − 𝒊  // Calculate the corresponding j value 

16             if 𝟏 ≤ 𝒋 ≤ 𝒏 do 

17                 if 𝒊 = 𝒏 do 

18                     term ← 𝒑𝒊 * 𝒒𝒋  // Current term 

19            equation.append(term) // add current term to equation   

20                 else 

21                     term ← (𝒑𝒊 * 𝒒𝒋 + 𝒂𝒕)  // Current term with carry 

22            equation.append(term) // add current term to equation 

23                     domains[𝒂𝒕] ← (0, 9)  // Add carry to the domains 

24                     𝒕 ← 𝒕 + 𝟏  // Increment carry index 

25                 end if 

26                 end if 

27 Set equation_str to join elements of equation using " + " 

28          R_value ← R_values[−𝒌]  // Get the R value for this equation 

              #adding the partial sum carry terms 
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29          if 𝒌 > 𝟐 do 

30             full_equation ← (equation_str + 𝒃𝒌) mod 10 = R_value  // Add carry term (𝒃𝒌) 

                  constraints.append(full_equation)  // Add the completed equation to the constraints 

31             domains[𝒃𝒌] ← (0, 9)  // Add carry variable to domains 

32          else 

33             full_equation ← equation_str mod 10 = R_value  // Complete the equation 

34             constraints.append(equation)  // Add the completed equation to the constraints 

35          end if 

36          domains[𝒑𝒌] ← (0, 9)  // Add domain values of 𝒑 at position 𝒌 

37          domains[𝒒𝒌] ← (0, 9)  // Add domain values of 𝒒 at position 𝒌 

38      end for 

39      constraints.reverse  // Reverse constraints to ensure proper order 

40      return {constraints, domains}  // Output the constraints and domains 

41  end function 

Algorithm 1 transforms a sequence of digits from the RSA modulus into a well-organized set of constraints and 

domains suitable for solving as a CSP. Each digit from the input is regarded as a constant, while variables are 

created for the terms in equations that model relationships between the digits. It analyzes the input digits, 

formulating modular equations that include variables 𝑝𝑖  , 𝑞𝑗, 𝑎𝑡, 𝑏𝑘. To handle carryovers and modular arithmetic, 

remainder terms 𝑎𝑡 and 𝑏𝑘 are incorporated. The constraints are generated sequentially, beginning with the least 

significant digit (LSD) and progressing backwards. Each constraint integrates modular arithmetic and carryover 

terms as necessary. The construction of constraints occurs in reverse order to optimize processing and maintain 

alignment between the equations and the input structure. This results in a framework of constraints and domains 

that systematically addresses digit-based problem-solving challenges. 

Solving the Formulated CSP  

A solution to a CSP involves assigning a distinct value to each variable in such a way that all imposed constraints 

are fulfilled. The structure of our formulated CSP necessitates using a systematic search algorithm that explores a 

problem instance's search space, ensuring that either an optimal solution is identified or the absence of a solution 

is definitively established. This essential characteristic of systematic search algorithms is referred to as 

completeness. 

Algorithm 1 presents a systematic approach for constraint satisfaction (CS) to estimate the digit pairs of 𝑝 and 𝑞. 

The algorithm formulates constraints based on the lengths of 𝑝 and 𝑞, or the k-LSDs, where k is the number of 

LSDs positions required, facilitating an organized retrieval of (𝑝, 𝑞) pairs. Consequently, our approach integrates 

two systematic search techniques: Generate and Test (GT) and Backtracking with Heuristic Variable Ordering 

(BHVO). Initially, the GT algorithm proposes a potential solution, followed by testing its validity to determine 

whether it meets the original constraints using the BHVO. Within this framework, every possible combination of 

variable assignments is systematically generated and evaluated against the constraints. The first combination that 

meets all constraints is deemed the solution. This approach not only ensures the identification of a solution when 

one exists but also often does so more efficiently when 𝑘 is small. The following section elaborates on our method 

utilizing GT and BHVO. 

LSDs pair (𝒑𝒊, 𝒒𝒊)  estimation based on the GT and BHVO 

We examine the digit pairs (𝑝𝑖 , 𝑞𝑖) from a combinatorial perspective, beginning with the LSD. We employ 

combinatorial generation methods to investigate all potential pairs of digits (𝑝𝑖 , 𝑞𝑖) that meet the specified modular 

and arithmetic conditions. The primary objective is to systematically evaluate viable combinations while utilizing 

the constraints to filter out those that are not feasible. Our analysis will concentrate on the conventional RSA 

relationship (𝑁 = 𝑝𝑞), particularly the factorization techniques outlined in [21]. The success of our algorithm only 

necessitates the knowledge of N. 
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Case of k-LSD pairs: 

Step 1: Algorithm 3 begins by leveraging the outputs of Algorithm 1, which defines the lengths of p and q, 

generates the constraints, and establishes their respective initial domains. 

Step 2: Since the first constraint (one’s column) involves modular multiplication with only one term, guided by 

Algorithm 2, all the valid combinations of the LSD (𝑝𝑛 , 𝑞𝑛) and the first 𝑎1(carry propagation) are generated based 

LSD of 𝑁. Note that (𝑝𝑛, 𝑞𝑛) are known to have specific properties ending in 1, 3, 7, or 9 for primality.  

Algorithm 2 serves as a modulo 10 multiplication lookup table. Given the LSD of 𝑁, for every match in the modulo 

table, the associated 𝑝𝑖 , 𝑞𝑗, and 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡[𝑖][𝑗] values are captured. The values above the diagonal (upper triangular 

part) are mirrored in the lower triangular part of the table. Hence, we preserved only the upper triangular part for 

fast computation. This is because (𝑖 × 𝑗) mod 10 is the same as (𝑗 × 𝑖) mod 10. In other words, multiplication is 

commutative, and the modulo operation preserves this property. 

Step 3: Generate and test k-LSDs of 𝑝 𝑎𝑛𝑑 𝑞 pair for all feasible combinations of 𝑝𝑘 and 𝑞𝑘 whose last digits are 

in (𝑝𝑛 , 𝑞𝑛). 

Step 4: Apply Local Constraints for iterative refinement: 

 The method selects values for 𝑝𝑘 sequentially from its domain and checks all possible combinations in the 𝑞𝑘 

domain. Note that the domain here is the feasible combinations by step 3. The approach avoids recomputing 

previously tested combinations for earlier values of 𝑝𝑘. 

 The last 𝑘 digits of 𝑁 can be derived from 𝑁 𝑚𝑜𝑑 10𝑘 for increasing values of 𝑘 to test consistency. This 

modular result provides a relationship between the LSDs of 𝑁 and the possible LSDs of its factors. We test 

factors 𝑝𝑘 and 𝑞𝑘 such that:  

(𝑝𝑘  . 𝑞𝑘) 𝑚𝑜𝑑 10𝑘 = 𝑁 𝑚𝑜𝑑 10𝑘 

 Each valid pair (𝑝𝑘 , 𝑞𝑘) is further tested against the constraints provided by Algorithm 1 to eliminate invalid 

combinations, significantly reducing the solution space. 

 If no valid combinations exist, the algorithm backtracks to the previous step to try a different pair (𝑝𝑘 , 𝑞𝑘) 

 Use constraints and previously selected digit pairs at each step to narrow down possible combinations for 

the current digit. 

Step 5: After validating combinations for all digit positions, the algorithm assembles the digits to reconstruct p and 

q: 

 Gather all pairs (𝑝𝑘 , 𝑞𝑘) that satisfy the constraints for each position 𝑘. 

 If multiple solutions are possible, return all valid combinations. 

 

Algorithm 2: Generating the first LSDs of 𝒑 and 𝒒 

Input: LSD of 𝑵 

Output: first LSDs of 𝒑, 𝒒 and 𝒂𝟏 (first carry progation) 

1 function First_LSDs_𝑷𝒏𝑸𝒏 (𝑳𝑺𝑫_𝑵) 

2     Initialize 𝒑𝒏 ← [1, 3, 7, 9]  // initial 𝒑𝒏 values 

3     Initialize 𝒒𝒏 ← [1, 3, 7, 9]  // initial 𝒒𝒏 values 

4     Initialize 𝒑𝒏_𝒗𝒂𝒍𝒖𝒆𝒔 ← []  // final 𝒑𝒏 values 

5     Initialize 𝒒𝒏_𝒗𝒂𝒍𝒖𝒆𝒔 ← []  // final 𝒒𝒏 values 

6     Initialize 𝒂𝟏_𝒗𝒂𝒍𝒖𝒆𝒔 ← []  // final  𝒂𝟏 values 

7     mod_table ← 2D array of size |𝒑𝒏|x|𝒒𝒏| 

8     quotient_table ← 2D array of size |𝒑𝒏|x|𝒒𝒏| 

9     for each 𝒊 in 𝒑𝒏 do 
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10         for each 𝒋 in 𝒒𝒏 do 

11             if 𝒊 ≥ 𝒋 then 

12                mod_table[𝒊][𝒋] ← (𝒊 * 𝒋) % 10 

13                quotient_table[𝒊][j] ← (𝒊 * 𝒋) // 10 

14            else 

15                mod_table[𝒊][𝒋] ← 0 

16                quotient_table[𝒊][𝒋] ← 0 

17            end if 

18        end for 

19    end for 

20    for each row 𝒊 in mod_table do 

21        for each column 𝒋 in row do 

22            if mod_table[𝒊][j] == 𝑳𝑺𝑫_𝑵 then 

23                Append 𝒑[𝒊] to 𝒑𝒏_𝒗𝒂𝒍𝒖𝒆𝒔 

24                Append 𝒒[𝒋] to 𝒒𝒏_𝒗𝒂𝒍𝒖𝒆𝒔 

25                Append quotient_table[𝒊][𝒋] to 𝒂𝟏_𝒗𝒂𝒍𝒖𝒆𝒔 

26            end if 

27        end for 

28    end for 

29    return 𝒑𝒏_𝒗𝒂𝒍𝒖𝒆𝒔, 𝒒𝒏_𝒗𝒂𝒍𝒖𝒆𝒔, 𝒂𝟏_𝒗𝒂𝒍𝒖𝒆𝒔 

30 end function 

 

Algorithm 3: LSDs pair (𝒑𝒊, 𝒒𝒊)  estimation 

Input: RSA modulus 𝑵, 𝒌 (number of LSDs to estimate) 

Output: 𝒑𝒌, 𝒒𝒌 LSDs pairs 

1 function 𝒌_𝑳𝑺𝑫𝒔𝑷𝒓𝒊𝒎𝒆𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒊𝒐𝒏(𝑵, 𝒌, ) 

      // Initialization using Algorithm 1, 2 

2     constraints, domains ← Algorithm 1 (𝑵) 

3     (𝒑𝒏, 𝒒𝒏)_combinations, 𝒂𝟏 ← Algorithm 2 (𝑳𝑺𝑫_𝑵) // Get the list of all possible   

        (𝒑𝒏, 𝒒𝒏) pairs and 𝒂𝟏 (the first carry propagation) 

4     k-LSDs_combinations ← [𝒏 for 𝒏 in range (𝟏𝟎𝒌) if 𝒏 mod 10 in   

       {(𝒑𝒏, 𝒒𝒏)_combinations}]  // GT combinations ending in valid LSD 

          // Apply Local Constraints and Refinement based on the BHVO 

5     feasible_solutions ← [ ]  // Store final valid combinations 

6     for 𝒊, 𝒑 in enumerate(k-LSDs_combinations) do 

7         for 𝒒 in k-LSDs_combinations [𝒊:] do  // Ensure pairing starts from current index 

https://doi.org/10.54216/JCIM.160104


 

Journal of Cybersecurity and Information Management (JCIM)                               Vol. 16, No. 01, PP. 38-52, 2025 

47 
DOI: https://doi.org/10.54216/JCIM.160104  

Received: October 24, 2024 Revised: January 11, 2025 Accepted: February 09, 2025 

 

8             if (𝒑. 𝒒) mod (𝟏𝟎𝒌) = 𝑵 mod (𝟏𝟎𝒌) do  // Test modular consistency 

9                 // Check for duplicate pairs in the solution space 

10       if not exists pair in feasible_ solutions where (𝒑 = pair[0] and 𝒒 = pair[1]) or (𝒑    

                   = pair[1] and 𝒒 = pair[0]) do 

11                     for each 𝒂𝟏 in domains["𝒂𝟏"] do  // Iterate over possible values of the first    

                          carry 

12                           if satisfies_constraints(𝒑, 𝒒, 𝒂𝟏) then 

13                               feasible_ solutions.append(𝒑, 𝒒) 

14     else 

15        Backtrack to line 14 

16                           end if 

17                     end for 

18                 end if 

19             end if 

20     𝐫𝐞𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐞𝐝_𝐩 ← concatenate_digits(feasible_ solutions, "𝒑")  // Reconstruct p 

21     𝐫𝐞𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐞𝐝_𝐪 ← concatenate_digits(feasible_ solutions, "𝒒")  // Reconstruct q 

22     return 𝐫𝐞𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐞𝐝_𝐩, 𝐫𝐞𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐞𝐝_𝐪  // Output reconstructed numbers 

23 end function 

 

Improving the known bits prime factorisation of 𝑵 = 𝒑𝒒 in polynomial time 

In this section, we show the primary attack introduced in [20]. 

Theorem 1. Let 𝑎, 𝑏 ∈ 𝕫+ and 𝑚 ≥ 2 be an even integer such that 𝑎 < 𝑏 < (2𝑎𝑚 + 1)1 𝑚⁄ . Consider 𝑁 = 𝑝𝑞 =
(𝑎𝑚 + 𝑟𝑝)(𝑏𝑚 + 𝑟𝑞) is a valid RSA modulus. Let 𝑟𝑝 ≡ 𝑝 ( 𝑚𝑜𝑑 2𝑚) 𝑎𝑛𝑑 𝑟𝑞 ≡ 𝑞 ( 𝑚𝑜𝑑 2𝑚) where 𝑟𝑝 < 2𝑎𝑚/2 

and 𝑟𝑞 < 2𝑏𝑚/2 such that 𝑚𝑎𝑥{𝑟𝑝, 𝑟𝑞} < 2𝑘. If 2𝑘−1(2
𝑚

2
+ 1) is sufficiently small and 12 𝐿𝑆𝐵𝑠 of 𝑝 and 𝑞 are 

known then 𝑁 can be factored in polynomial time. 

The authors characterize a sufficiently small value as the maximum feasible value of the lowest security level that 

can be subjected to brute-force attacks using contemporary computing technology. Currently, the lowest security 

level is established at 112 bits. 

Our improved attack 

Algorithm 3 pre-computed LSBs of 𝑝 and 𝑞, which are the main requirement of Theorem 1, with computational 

efficiency as input to the attack proposed by [20]. It overcomes the barriers posed by specific hardware to conduct 

a side-channel attack to reveal a portion of 𝑝 and 𝑞. 

Algorithm 4: Improved Factorisation of 𝑵 = 𝒑𝒒 

Require: initialize [(𝒑𝒌, 𝒒𝒌)] = 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟑  // where  [(𝒑𝒌, 𝒒𝒌)] is a list of k-LSDs of 𝒑 and 𝒒 

1   For 𝒓𝒑, 𝒓𝒒 in [(𝒑𝒌, 𝒒𝒌)] do  // 𝒓𝒑 ← 𝒑𝒌, 𝒓𝒒 ← 𝒒𝒌 

2        𝒊 = ⌈(𝒓𝒑𝒓𝒒)𝟏 𝟐⁄ ⌉ 

3        𝒋 =
𝒓𝒒

𝟐
+ 𝟐

𝒎

𝟐
−𝟏𝒓𝒑 + 𝟏 

4        For 𝒊 to 𝒋 do  
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5              𝜹 = ([√𝑵] − 𝒊)
𝟐
 

6              𝒛 ≡ 𝑵 − (𝒓𝒑𝒓𝒒) (𝒎𝒐𝒅 𝜹) 

7              𝒙𝟏,𝟐 ← 𝒓𝒐𝒐𝒕 𝒐𝒇 𝒙𝟐 − 𝒛𝒙 + 𝜹𝒓𝒑𝒓𝒒 = 𝟎 

8              If (
𝒙𝟏

𝒓𝒒
+ 𝒓𝒑 ∈ 𝕫+) or (

𝒙𝟐

𝒓𝒑
+ 𝒓𝒒 ∈ 𝕫+) then 

9                    Return 𝒑 =
𝒙𝟏

𝒓𝒒
+ 𝒓𝒑, 𝒒 =

𝒙𝟐

𝒓𝒑
+ 𝒓𝒒 

10                  Exit // Break inner loop 

11            End if 

12        End for 

13     Exit // Break outer loop 

14 End for 

4. Results and Discussions 

Simulations were carried out using Python 3.12.7 in the Jupyter Notebook environment on a local machine for the 

numerical simulation of the proposed heuristic algorithm based on CSP and an enhanced attack for assessing 

performance and robustness. The specifications of the machine utilized for the simulation included an AMD 

Athlon Silver 3050U processor with Radeon Graphics operating at 2.30 GHz and a 64-bit Windows 10 operating 

system with 20 GB of RAM. To facilitate rapid multiple-precision real and complex arithmetic, the gmpy2 module 

was employed. 

Estimating the k-LSDs of 𝒑 and 𝒒 

The first test aimed to analyze the performance of Algorithm 3, which employs the GT and BTVO techniques for 

estimating k-LSD pairs of 𝑝 and 𝑞. The test concentrated on the total number of feasible (𝑝𝑘 , 𝑞𝑘) LSD pairs, the 

number of steps needed to find the target pair and how long it would take to complete the search. This measure 

emphasizes the computational complexity and provides information about the algorithm's convergence to a 

solution. RSA-2048 bits modulus was utilized in this instance. 

N= 

303777936847867956132538165969531557029038039462550490562263778911266532621998830006022120

515195460081461072739766830427770638540776883097338470765695773446337634719363743523041287

195275107807588967629210296137809984650307049354235778708843244171705443329481896666555984

680875188962519514964943013668289321494604217634407215333494399925967281040098408258970787

402796210795620457031563314776297318457364727098150982319489607352639067598765581250334795

086167353619069957478276507597049982051339166520415877680068388933590536335414235769417888

81211767696803557896063624995312801941343569522495782450738789819077631126383 

Table 1: Results of Algorithm 3 based on the first 5-LSDs of 𝑝 and 𝑞 

𝑘 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑝𝑘 , 𝑞𝑘) 𝐿𝑆𝐷𝑠 pair 

𝑛 

Number of iterations 

to find the exact pair 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 

1 2 1 0 ns 

2 16 11 0 ns 

3 160 23 15.6 ms 

4 1621 403 1.28 s 

5 16206 6987 2 min 20s 
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As indicated in Table 1, conducting a linear search within a list of size (𝑝𝑘 , 𝑞𝑘)  LSDs pair, where 𝑛 denotes the 

size, results in a worst-case complexity of 𝑂(𝑛). Given that the optimal pair (𝑝𝑘 , 𝑞𝑘) can be positioned randomly, 

the anticipated number of iterations required to identify the optimal pair is 𝑂(𝑛 2⁄ )  in the average scenario. 

However, with an increase in the value of 𝑘, both the time needed to generate and validate 𝑛 and the time to find 

the target pair, rise linearly. The latest guidance from NIST [22] on key management specifies that a minimum-

security level is 112 bits. This suggests that the maximum practical value of 𝑛 that can be subjected to brute force 

by contemporary computing machines is 2112. Consequently, any value of 𝑛 below 2112 is negligible. Hence, it 

takes polynomial time to brute-force 𝑛 to discover the optimal (𝑝𝑘 , 𝑞𝑘) LSD pair at any position of 𝑘, as illustrated 

in Table 1. 

Known Bits Prime Factorization Attack Based on the 12-LSBs of 𝒑 and 𝒒 

This section replicates the known bits prime factorization attack outlined in Algorithm 4, which utilizes prior 

knowledge of the 4-LSDs of p and q. The experiments were conducted with balanced RSA primes, each having a 

bit length of 1024, thus forming an RSA-2048 modulus as follows; 

N= 

254432134848033306765466360605067672713192119562738803513743518254625615801325511773983650

045673026490293724691085285813831823660328796126064275138262348021411229982061934595317738

337964801727892542334700845922311179460436678038166743671495233267311270087333553618242507

436617332719512700416039949918552601931006443393514094460366015740466980367515605709366458

027738329608044170750026717443548158411552466678315129569489611803135375760808108789041284

576974946332649978083818108441170169597124938473832333003773478189908742844727615199026762

54694772586325941589525740707826852095908188649384624121217162949627607660163 

We initiated the process by estimating the 4-LSDs (equivalent to the 12-LSBs) of p and q, utilizing N as required 

by Theorem 1 to facilitate the factorization of N through Algorithm 3. In our focus on the 4-LSDs of p and q, the 

RSA modulus N and the numeral four (4) are provided as inputs to Algorithm 1, ensuring that the generated 

constraints were up to four (4). The LSD of N, which is 3, was subsequently fed into Algorithm 2 to determine the 

last digit positions of of 𝑝 (𝑝4), 𝑞 (𝑞4) and the initial partial product carry, 𝑎1. The results were 𝑝4 = [1,7], 𝑞4 =
[3,9], and 𝑎1 = [0,6]. The GT method was applied based on the values obtained for 𝑝4 and 𝑞4 (Algorithm 3, line 

5), yielding the first set of feasible solutions. BHVO then undertook a local constraint for iterative refinement to 

filter these feasible solutions (Algorithm 3, lines 13-20). Ultimately, we identified 1623 optimal solutions, as 

shown in Table 2. 

 

Table 2: Results of 4-LSDs (𝑝, 𝑞) pairs of 𝑁 

𝑘 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑝𝑘 , 𝑞𝑘) 𝐿𝑆𝐷𝑠 pair 

 

Total time taken (ms) 

4 1623 953 

 

Generating optimal combinations of 4-LSDs for p and q was finished in 953 milliseconds (refer to Table 2). This 

attainment is notable regarding the complexity of the task, which concerned listing and confirming all potential 

combinations of two major prime factors. This analysis is efficient enough to allow subsequent cryptographic 

analyses without significant delays in pre-processing for operations requiring real-time computations, such as 

predicting key structures or assessing factorization limitations. Early pruning of the algorithm, which uses a pre-

computed list of 4-LSD primes, results in fewer potential pairs for analysis. Moreover, pairs that do not meet the 

necessary modular constraints for forming valid RSA moduli are eliminated at the outset. 

We now turn to Algorithm 4, which simulates the factorization of N in polynomial time utilizing the 4-LSDs of p 

and q, as shown in Table 2, by Theorem 1. By pre-computing the 4-LSDs of p and q the factorization process 

(Algorithm 4) benefits from a refined search space, leading to decreased computational demands and minimizing 

dependence on assumptions that might not hold in actual attack scenarios. This pre-computation phase enhances 

overall efficiency by filtering out non-viable candidates, enabling the factorization algorithm to concentrate on 

pairs with a higher probability of success. 
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Each pair of 4-LSDs generated is systematically inputted into Algorithm 4, denoted as 𝑟𝑝 and 𝑟𝑞 . Algorithm 4, then 

iteratively assessed these pairs to pinpoint the precise combination that fulfils the condition outlined in line 8 of 

Algorithm 4. The optimal pairs (3017, 2539) yielded the prime factors of N, as shown in Table 3. 

Table 3: Factorization of RSA-2048 known bits prime 

Exact 4-LSDs of p and q (3017, 2539) 

Number of iterations 527 

P value 207632566695348090325106198564354306872362493463538154841386

314580707220972445801440409737589803024013035554181699335224

061662229162879643933792870833231736875142501533422110427899

095351781206012327937258761409973123340262144886588093314114

536052456895922041585909651666335476791456709509341751911472

100003017 

Q value 122539608741316849829261726098688957114502463272691906657106

165887494465656483627796660671278978213477051915433597161268

345944097932917669169852614268434890176706523882967335716979

529907163623313323845921267400475000574500531377847942396759

927437400904034577111052905698000623411296101838403579267392

100002539 

Total Time taken (s) 2.61 

 

The results were analysed and understood based on a practical application, as demonstrated in Table 3. Algorithm 

4, which employs the GT and BHVO techniques, shows significant efficiency, especially when the parameter 𝑘 

(indicating the number of constraints) is minimal. This efficiency is attributed to its capacity to prioritize choices 

that eliminate infeasible solutions early in the computation process. These techniques ensure that the computational 

steps needed to meet constraints and perform factorization remain within polynomial limits (2.61 seconds). This 

guarantees feasibility and provides predictability in runtime, regardless of variations in input constraints. This 

method is a reliable process within polynomial time for a known bit’s factorization process, which is a significant 

benefit. 

Scope of the attack and countermeasures 

The prime numbers examined in this paper focus on the RSA modulus, denoted as 𝑁, and its prime factors, 𝑝 and 

𝑞, which meet the specified condition: 

⌈√𝑁 − ⌊√𝑝⌋ . ⌊√𝑞⌋⌉ < 2112 

Though this study's applied known bits prime factorization method focuses on a particular subset of prime 

numbers, there is no effective detection technique to mitigate the threat. Therefore, avoiding these primes in the 

RSA key generation process is crucial and requires a comprehensive awareness of the secret parameters 𝑝 and 𝑞. 

If the RSA modulus 𝑁 and its prime factors 𝑝 and 𝑞 fulfil the outlined condition, the key generator must identify 

new values for 𝑝 and 𝑞; otherwise, 𝑁 remains vulnerable to the discussed attack. 

Future scope of the study 

Algorithm 3, based on the GT and BHVO, exhibits effectiveness for smaller values of 𝑘 (specifically, values below 

6). Its reliance on sequential exploration may create difficulties as 𝑘 grows considerably. Further studies should 

utilise performance enhancement techniques like advanced heuristics to improve the algorithm's resilience for 

larger 𝑘. Additional testing with higher-order LSDs is essential to validate the method's scalability, as the 

computational complexity may escalate exponentially with greater precision. 

The formulated problem is grounded in CSP. As previously mentioned, a well-designed solver capable of 

evaluating variables in polynomial time (especially for larger k) can also retrieve the prime factors of the RSA 
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modulus N. Future research should concentrate on developing CSP solvers tailored explicitly to our CSP 

formulation. Given that deep learning has shown promising outcomes in CSP-related tasks [23], particularly with 

reinforcement learning [24] and transformer-based architectures [25], these models should inform the design of 

such solvers to optimize efficiency. 

We assessed our proposed method using known 4-LSDs of known primes (12 bits of 𝑝 and 𝑞). Further 

investigations should apply the proposed method to factorization attacks involving higher known LSBs of primes 

and attacks based on random knowledge of 𝑝 and 𝑞. 

5. Conclusion 

This study introduced a new heuristic algorithm grounded in the CSP to estimate k-LSDs of the RSA prime factors, 

𝑝 and 𝑞, towards known bits factorization attacks. Based on the partial knowledge of the RSA prime factors, our 

improved attack does not require specialized hardware for side-channel attacks. The proposed algorithm was 

assessed through the known LSBs attack on specifically structured RSA primes outlined by Abd GHafar et al. 

[20], achieving successful factorization of a 2048-bit modulus N in polynomial time. Additionally, the study 

discussed countermeasures to protect RSA users from such attacks. The method presented lays a foundation for 

future investigations into prime factorization methods involving known bits and cryptanalysis. In future studies, 

integrating machine learning models such as reinforcement learning and transformer-based architectures may 

improve the selection and refinement of candidate pairs 𝑝 and 𝑞. Given that the heuristic approach relies on the 

CSP, the development of intelligent solvers is of considerable significance in facilitating prime factorization. 
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