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Abstract

This paper deals with some inverse problems for nonlinear time-dependent PDEs in one
spatial dimension, we investigate an inverse Cauchy problem that is settled by the nonlin-
ear viscous Burgers equation. The viscous Burgers equation is a partial differential equation
that is encountered in fluid dynamics studies, particularly in the domain of upward flow. The
simplified model of the viscous Burgers equation explains the behavior of incompressible
viscous fluid. The inverse Burgers problem belongs to a class of problems called ill-posed
problems, which implies that there may be multiple sets of initial and/or boundary condi-
tions that result in the same solution of the Burgers equation.
To obtain robust and reliable solutions, it is essential to use regularization and cross-validation
methods. However, it is often difficult to solve analytically, so numerical approaches are
developed to overcome this difficulty. Domain decomposition (DDM) was used with al-
ternative iterative methods. We performed a numerical reconstruction of the velocity and
normal stress tensor that were vanished on an inaccessible part of the boundary using the
over-prescribed noisy data obtained on the other accessible part of the boundary.

Kewords: Burger Equation; Inverse Problem; Cauchy Problem; Operations Research (OR);
Boundary Condition

1 Introduction

Inverse problems in applied mathematics, particularly in the fields of fluid mechanics, geo-
physics, and medical imaging, consist in determining unknown parameters from partial or
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indirect measurements. Solving these problems requires efficient and accurate methods, par-
ticularly when conditions are complex and data are noisy. Among the common approaches,
iterative domain decomposition methods, such as Dirichlet-Neumann, Neumann-Neumann,
Robin, and Agoshkov-Lebedev, are widely used to improve the convergence of solutions in
multidomain settings. There is an essential and fundamental differential equation in fluid
mechanics, known as the Burgers equation. Bateman1 first derived this equation in 1925,
and then Burger? in 1948. It has been widely used in the literature to describe turbulent flow
in a channel resulting from the interaction of the opposing processes of convection and dif-
fusion. The Burgers equation is the incompressible Navier-Stokes equation without taking
into account pressure and strain. It is also used in many areas of daily life such as circula-
tions,2 shocks4 and gas dynamics.5 Analytical and numerical solutions for the Burgers equa-
tion have been studied and developed by many researchers. Methods such as the tanh-coth
method, the differential transformation method, the Backlar transformation method6 and the
Hopf-Cole transformation ?and7 have allowed to obtain analytical solutions, as well as for
the first time, Fletcher ,8 the finite difference method, spectral methods and the variational
iteration method .9 The objective of this study is to analyze the solvability and numerical
resolution of a series of inverse problems involving the nonlinear Burgers equation.
Numerical investigations of the inverse Berger equation are used in many fields, such as
fluid mechanics, nonlinear waves and meteorology. However, it is essential to use numerical
techniques such as the finite element method, the finite difference method or the spectral
element method in order to find a numerically stable solution. With these techniques, it
is possible to interpret the Burger equation and to solve the resulting system of equations
in order to determine its initial and / or boundary conditions. This article explores the ap-
plication of these iterative methods to solve an inverse diffusion problem. By combining
these techniques with acceleration parameters, the objective is to test their effectiveness in
terms of convergence speed and solution accuracy. We successively study the resolution of a
Dirichlet and Neumann problem through several algorithms, each adapted to a specific type
of domain decomposition10 and.11

The numerical results obtained are analyzed in terms of the error between the exact solution
and the approximate solution for each method, as a function of the number of iterations.
We also present a comparative study of the different acceleration strategies, with empha-
sis on the optimization of the acceleration parameters, such as the θ parameter, in order
to maximize the convergence speed without compromising the accuracy of the solution.
In conclusion, this study demonstrates the effectiveness of iterative domain decomposition
methods in solving inverse problems, while highlighting the importance of optimizing the
acceleration parameters to obtain accurate results in a reduced number of iterations.

The outline of this article is as follows: Section 2 introduces the form of direct Burgers’
Equation and its components. ,section 3, Conversion of Burgers’ equation into weak form
for numerical methods (e.g., finite element, finite difference). In section 4, discussion of
boundary conditions (Dirichlet, Neumann, Robin) for solving the problem,In section 5, for-
mulation of the inverse problem: determining boundary conditions from the solution. In
section 6,7 we formulate the ICP as an optimization problem. In section 8, splitting the
domain into subdomains and solving locally using iterative methods (e.g., alternating it-
erations). Section 9 study numerical experiments and application of Dirichlet-Neumann,
Neumann-Neumann, Robin, and Agoshkov-Lebedev methods for solving the problem.
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while section 10 we are study of error behavior across iterations, particularly for inverse
problems and comparison of solutions and errors for each method (direct and inverse).. In
section 11, we are find numerical results and finding the optimal acceleration parameter
θ for faster convergence, section 12 we are introduce discussion our results, Agoshkov-
Lebedev method is the most efficient for inverse problems, outperforming other methods.
Lastly, section 13 summarize the conclusion that Agoshkov-Lebedev method with optimized
parameters offers the best performance.

2 Direct Burger’s equation

The one- dimensional unsteady viscous Burger’s equation is a fundamental partial differen-
tial equation used in various fields such as fluid dynamics and nonlinear wave propagation.
It’s often written in the form: (Eq. 1)

∂u

∂t
+ u

∂u

∂x
= κ

∂2u

∂x2
(1)

Where: u(x, t) represents the velocity field (is the solution we are looking for) , t is the
time, κ is the kinematic viscosity, which determines the strength of the diffusive term. It’s a
positive constant, and κ∂

2u
∂x2

represents diffusion term. and κ is the spatial variable.

3 Solve the Burger’s equation using weak formulation.

To solve the Cauchy-Burger equation using the weak form method, the equation must be
converted into a suitable form that can be handled using numerical methods such as the finite
element method or the finite difference method. The Cauchy-Burger equation is one of the
partial differential equations used in modeling physical phenomena such as heat distribution
or fluid flow, and it appears in the form of a nonlinear partial differential equation.
We must rewrite the Burger’s equation in its weak form in order to solve it , In function
spaces less regular than the classical L2 space, such as Sobolev spaces, the solution can be
approximated thanks to the weak form of the equation.

• Governing Equation (Classical Form): Burger’s equation with a diffusion term is ex-
pressed in classical form ( Eq. 2):

• Weak Formulation: First, multiply using a test function vx , which is usually selected
from the same function space as the solution u, multiply both sides of the equation to
obtain the weak form, then integrate over the domain Ω = [0, L]. ( Eqs. 3).∫ T

0

∫ L

0

(
v(x)

∂u

∂t
+ v(x)u

∂u

∂x

)
dxdt =

∫ T

0

∫ L

0

v(x)ν
∂2u

∂x2
dxdt (2)

∫ T

0

∫ L

0

v(x)
∂u

∂t
dxdt = −

∫ T

0

∫ L

0

∂v

∂t
udx (3)

DOI: https://doi.org/10.54216/IJNS.250428 324



International Journal of Neutrosophic Science (IJNS) Vol. 25, No. 04, PP. 322-345, 2025

• Implement integration by components: ( Eq. 5) Integrate by parts to deal with the term
involving the second spatial derivative later. To begin, remember the standard identity
for the second derivative’s integration:∫ T

0

∫ L

0

φ

(
∂u

∂t
+ u

∂u

∂x

)
dx dt =

∫ T

0

∫ L

0

νφ
∂2u

∂x2
dx dt (4)

3.1 Integrating the left-hand side:

- First term:
∫ L
0
φ∂u
∂t
dx

Using integration by parts in x-direction, and assuming that u(x, t) and φ(x, t) vanish
at the boundaries (or are periodic, depending on boundary conditions), we get:

∫ L

0

φ
∂u

∂t
dx =

d

dt

∫ L

0

φu dx

- Second term:
∫ L
0
φu∂u

∂x
dx

Again, using integration by parts:

∫ L

0

φu
∂u

∂x
dx = −

∫ L

0

∂φ

∂x
u2 dx+

[
φu2

]L
0

Assuming no boundary contributions or periodic boundaries, the boundary term van-
ishes. Therefore, this term simplifies to:

∫ L

0

∂φ

∂x
u2 dx

3.2 Integrating the right-hand side:

Third term:
∫ L
0
νφ∂2u

∂x2
dx

Using integration by parts on the second derivative term ( Eq. ??):

∫ L

0

φ
∂2u

∂x2
dx = −

∫ L

0

∂φ

∂x

∂u

∂x
dx+

[
φ
∂u

∂x

]L
0

(5)

Again, assuming no boundary contributions or periodic boundary conditions, this sim-
plifies to:

∫ L

0

∂φ

∂x

∂u

∂x
dx

DOI: https://doi.org/10.54216/IJNS.250428 325



International Journal of Neutrosophic Science (IJNS) Vol. 25, No. 04, PP. 322-345, 2025

3.3 Putting everything together:

We now have the weak formulation ( Eq. 6):

d

dt

∫ L

0

φu dx+

∫ L

0

∂φ

∂x

(
ν
∂u

∂x
− u2

)
dx = 0 (6)

This equation represents the **weak form** of the Burgers’ equation. It expresses the
evolution of the solution u(x, t) in terms of its interaction with test functions φ(x, t),
and it can be used to derive numerical methods (such as finite element or finite differ-
ence methods) to approximate the solution of the equation.

4 Boundary Conditions: Types and Choices

To solve this equation over a specific domain, you need to specify the boundary conditions
at the endpoints of the spatial domain [0, L] . The boundary conditions can vary depending
on the physical scenario and assumptions made about the flow.

• Dirichlet Boundary Conditions (Prescribed value of u ): This type of boundary condi-
tion specifies the value of u at the spatial boundaries.

u(0, t) = u0, u(L, t) = uL

Physical meaning: This implies that the velocity of the fluid (or the quantity modeled
by u) is fixed at the boundaries of the domain at all times. For example, in a pipe, this
could represent fixed inflow and outflow velocities.
- Example: If you are modeling the velocity of a fluid flowing through a pipe, you
might set the inflow and outflow velocities to fixed values.

• Neumann Boundary Conditions (Prescribed derivative of u): This type of boundary
condition specifies the gradient (or derivative) of u at the boundaries.

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

- Physical meaning: This corresponds to(no flux) at the boundaries, implying that the
velocity is constant (no change) in the direction normal to the boundary. This could
represent situations where there is no shear or pressure gradient at the boundaries.

- Example: In a pipe with fluid flow, this might represent the case where the fluid ve-
locity at the boundaries is zero (like in a channel with no-slip conditions at the walls).
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• Periodic Boundary Conditions: This type of boundary condition is appropriate when
the domain is periodic, meaning the solution ”wraps around” the boundaries and re-
peats.

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t)

- Physical meaning: This implies that the solution is periodic in space. For example,
this could model a situation where the system repeats over time, like waves propagat-
ing in a loop or a fluid flow in a closed loop (e.g., a circular pipe or ring).

Example: Periodic boundary conditions might be used when modeling a flow that
circulates, such as in a recirculating channel or periodic turbulence.

• Mixed Boundary Conditions: In some cases, you might have a combination of Dirich-
let and Neumann conditions at the two ends of the domain:

u(0, t) = u0,
∂u

∂x
(L, t) = 0

- Physical meaning: This would mean that u is fixed at one boundary (e.g., the left
boundary), while the derivative is zero at the other boundary (e.g., no flux condition
at the right boundary).
Example: This might be used when you want to model a flow with a specified inlet
velocity at one end, while there is no flux or gradient of velocity at the other end.

4.1 Initial Conditions

In addition to boundary conditions, you also need to specify the initial condition to complete
the problem. The initial condition defines the state of the system at t = 0. For the Burgers’
equation, an example initial condition could be:

u(x, 0) = f(x)

Where f(x) is some function that defines the initial profile of u across the spatial domain.
The initial condition could be:

• Dirichlet: Specifies the velocity at the boundaries.

u(0, t) = u0, u(L,t) = uL

• Neumann: Specifies the flux (derivative of the velocity) at the boundaries. ∂u
∂x
(0, t) =

0 , ∂u
∂x
(L, t) = 0

• Periodic: The solution is assumed to repeat across boundaries. u(0,t) = u(L,t), ∂u
∂x
(0, t) =

∂u
∂x
(L, t)

• Mixed: A combination of Dirichlet and Neumann conditions at opposite boundaries.
u(0, t) = u0 , ∂u

∂x
(L, t) = 0
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4.2 Physical Considerations

For a fluid flow through a channel or pipe, typical boundary conditions would be Dirichlet
conditions at the inlet and outlet to specify the velocity (e.g., u(0, t) = u0 and u(L, t) = uL.
)
For a closed system or when modeling waves propagating, periodic boundary conditions
might be more appropriate. If you want to model a no-slip condition at the boundaries of a
pipe, Neumann conditions (no flux) could be used.
Choosing the right boundary conditions depends on the physical problem being modeled
and the assumptions you make about the flow or system behavior at the boundaries.

5 Inverse Cauchy problem for the Burgers’ equation (,1213)

This paper focuses on the inverse system of Burgers’ equations and seeks to determine the
boundary conditions in this system for the Burgers equation as follows: Let us consider:

ut =
∂u

∂t
, ux =

∂u

∂x
, uxx =

∂2u

∂x2

νt =
∂ν

∂t
, νx =

∂ν

∂x
, νxx =

∂2ν

∂x2

I.P



ut − uxx + λuux + α(uv)x = 0, 0 < x < 1, 0 ≤ t ≤ T,
vt − vxx + λvvx + β(uv)x = 0, 0 < x < 1, 0 ≤ t ≤ T.

with the initial conditions:
u(x, 0) = f1(x), v(x, 0) = f2(x), 0 < x < 1,

and the boundary conditions:
u(0, t) = p1(t), v(0, t) = p2(t), 0 ≤ t ≤ T,
u(1, t) = q1(t), v(1, t) = q2(t), 0 ≤ t ≤ T,
u(x∗, t) = g1(t), v(x∗, t) = g2(x), 0 < x∗ < 1, 0 ≤ t ≤ T.

(7)

The overspecified data: u(x∗, t) = g1(t), v(x∗, t) = g2(x), 0 < x∗ < 1, 0 ≤ t ≤ T
Where λ is the real constant, α and β arbitrary constants depend on the system param-
eters such as the Peclet number stokes the velocity of particles due to gravity and the
Brownian diffusivity. Also, T represents the final time, ω = {(x, t) : x ∈ [0, 1] =
Ω, t ∈ [0, T ]}, f1(x), f2(x), p1(t), p2(t) and q1(t), q2(t) are given continuous functions.
The boundary conditions p1(t), and p2(t) are unknown and are to be determined from over-
specified data u(x∗, t) = g1(t), v(x∗, t) = g2(x). We seek the functions u(x, t), v(x, t)
andp1(t), p2(t). For two unknown boundary conditions p1(t), p2(t). In other words, we will
consider the following problem: given initial and boundary conditions on a part of a model
domain, as well as the physical parameters inside the model domain in the inverse Burgers
equation, we need to recover the missing physical parameters, which are unknown in the
class of initial functions.
We focus mainly on the numerical treatment of parameter identification problems from the
inverse Burgers equation, such as the numerical parameter identification methods using the
spatial finite element discretization and domain decomposition algorithms that we intro-
duced in the inverse problem. Inverse problems are generally much more vulnerable to
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numerical instability than the solution of direct problems, and even to the ultra-sensitivity of
the problem function to perturbations, which implies that a small noise can give a solution
whose input-output relation is strongly altered. Noise (perturbations) can be explained by
errors induced in a source or a boundary condition, which are always present in reality. This
point of view is particularly relevant for numerical procedures aimed at solving poorly tuned
problems.

6 Operations Research Techniques to Solve the Inverse Cauchy Problem

In Operations Research (OR), we often use optimization methods to solve inverse problems.
The main approach is to formulate the ICP as an optimization problem and solve it using
standard OR techniques like gradient descent, conjugate gradient, or least squares optimiza-
tion. Additionally, regularization methods (such as Tikhonov regularization) are crucial to
stabilize the ill-posedness.?

7 Optimization Algorithm

We can employ common gradient-based optimization algorithms to address the optimization
problem. Our goal is to iteratively g(x) to minimize the objective function Jreg(g). Several
algorithms that are frequently utilized include:?

• Gradient Descent: Updates the solution g(x) iteratively by moving in the direction of
the negative gradient. g(k+1) = g(k) − α∇Jreg(g(k))
where α is the step size and ∇Jreg(g(k)) is the gradient of the objective function.

• Conjugate Gradient Method: An effective technique for resolving sparse, large linear
equation systems that come up during optimization.

• Levenberg-Marquardt Algorithm:An approach that is widely used for nonlinear least-
squares problems and strikes a balance between Gauss-Newton and gradient descent.

The Operations Research framework for solving the Inverse Cauchy Problem for the Burg-
ers’ equation can be outlined as follows:
1. Model Formulation:
- The forward problem is defined as the Burgers’ equation and initial condition.
- Construct the inverse problem as an optimization problem with the goal of reducing the
difference between calculated and observed data.
2. Numerical Solution:
- To solve the Burgers’ equation forward in time, start with an assumed initial condition and
work your way through it using finite element or other numerical techniques.
3. Optimization:
- By changing the initial condition g(x) to correspond with the observed data, optimization
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algorithms can be used to solve the inverse problem.
- Use regularization to keep the solution stable and avoid overfitting to data that is noisy.
We can effectively and efficiently solve large-scale inverse problems, like the ICP for Burg-
ers’ equation, by combining the domain decomposition technique with optimization meth-
ods for inverse problem solving. Accurate recovery of the initial conditions is guaranteed
by optimization algorithms like gradient descent or conjugate gradient, and domain decom-
position enables parallel computation, which lessens the overall computational load. By us-
ing regularization, the solution is further stabilized and overfitting to noisy data is avoided.
When combined, these techniques provide a strong foundation for addressing challenging
inverse issues in operations research, especially when dealing with physical systems that are
described by nonlinear partial differential equations.

8 Domain decomposition method ,10 ?

To solve the set of inverse problems (8), we are chose the domain decomposition approach
which has been developed by dividing the solution domain into several subdomains and
then solving the problem locally in each of these subdomains. Subsequently, the local solu-
tions are combined to obtain the global solution of the problem. The domain decomposition
method solves the inverse Cauchy problem of the Viscous-Burgers equation by following
these step by step approach to the problem. It is possible to divide the domain into several
subdomains, each section being considered as a subdomain. The Viscous-Burgers equation
can be solved locally in each subdomain using one of the available numerical methods, such
as the finite difference method or the finite element method. After collecting the local solu-
tions in each subdomain, it is possible to combine them in order to obtain the global solution
of the problem. This step may involve solving an adjustment problem in order to guarantee
the continuity of the global solution. This approach can help solve complex problems by
reducing the problem size and employing efficient numerical methods for each domain.
The domain decomposition method can be easily accelerated using Krylov subspace meth-
ods (as an instance, the conjugate gradient method for symmetric positive definite matrices
,14 GMRES ,15 BiCGSTAB for non-symmetric ones 17). The domain decomposition method
is then employed as Krylov technique preconditioners. The BiCGSTAB method was uti-
lized, which was preconditioned by the additive Schwarz method with or without a coarse
grid.
By combining optimization methods for solving inverse problems with the domain decom-
position technique, we can efficiently and effectively solve large-scale inverse problems,
such as the ICP for Burgers’ equation. Optimization algorithms, such as gradient descent or
conjugate gradient, ensure that the initial conditions are recovered accurately, while domain
decomposition allows for parallel computation, reducing the overall computational burden.
The use of regularization further stabilizes the solution, preventing overfitting to noisy data.
Together, these methods offer a powerful framework for tackling complex inverse problems
in Operations Research, particularly in physical systems described by nonlinear partial dif-
ferential equations.

This paper examines the application of the alternating iteration domain decomposition method
based on the updated boundary conditions of the subdomains already solved at each itera-
tion.
Problem Setup: We have the following equations:
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• For

u(x, t) = ut − uxx + λuux + α(uv)x = 0, 0 < x < 1, 0 ≤ t ≤ T

• For

v(x, t) = vt − vxx + λvvx + β(uv)x = 0, 0 < x < 1, 0 ≤ t ≤ T

• Assume we divide the domain (0,1) into two subdomains:
- Subdomain 1: Ω1(0, x

∗)
- Subdomain 2: Ω2(0, x

∗)
In Ω1

ut−uxx+λuux+α(uv)x = 0, 0 ≤ x ≤ x∗, vt−uvxx+λvvx+β(uv)x = 0, 0 ≤ x ≤ x∗.

In Ω2

ut−uxx+λuux+α(uv)x = 0, x∗ ≤ x ≤ 1, vt−uvxx+λvvx+β(uv)x = 0, x∗ ≤ x ≤ 1.

• Boundary and interface conditions:
- At the boundaries:

u(0, t) = p1(t), v(0, t) = p2(t), 0 ≤ t ≤ T, u(1, t) = q1(t), v(1, t) = q2(t), 0 ≤ t ≤ T.

- At the interface

x = x∗ : u(x∗, t) = g1(t), v(x∗, t) = g2(t),

Initial conditions:

u(x, 0) = f1(x), v(x, 0) = f2(x), 0 < x < 1.

• Solving subdomain problems:
For each subdomain, use a suitable numerical method such as Finite Element Method
to discretize the equations.

• Discretization:
- Let ∆x be the spatial step and ∆t be the time step.
- Use explicit finite elements methods for u and v :

un+1
i = uni +∆t (uxx − λuux − α(uv)x)

vn+1
i = vni +∆t (vxx − βvvx − (uv)x)

• Iterative Coupling:
- Initialize the solution in each subdomain using the initial conditions.
- Solve the equations in both subdomains, using the interface conditions to update the
solutions iteratively:
- At each time step, compute u(x∗, t) and v(x∗, t)from the solution in both subdo-
mains.
- Update u and v both subdomains using the values obtained at the interface.

DOI: https://doi.org/10.54216/IJNS.250428 331



International Journal of Neutrosophic Science (IJNS) Vol. 25, No. 04, PP. 322-345, 2025

9 Numerical experiments for square domain

To solve the Burger-viscous problem let us re-write our problem as adomain decomposition
with Dirichlet to Neumann conditions, let us consider our domain as a rectangular like the
one depicted below. ( see Fig. 1),
such that Ω =]− 1, 1[×]− 1, 1[ .with boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 our problem is to

Figure 1: Domain.

find u solution of the following problem:

−∆u(k+1) = f in Ω1

u(k+1) = ue on Γ3 and Γ2
∂u(k+1)

∂n
= ∂ue

∂n
on Γ1

u(k+1) = λ(k) on Γ4

(8)

To solve this problem let us re-write our problem as adomain decomposition with divided
our domain Ω into two domains Ω1 ∪ Ω2 such that(see Fig. 2): Roache Such that:
∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 ∪ Γ6 ∪ Γ7 where
Γ1 = {(x, y) ∈ ∂Ω1, x = t, y = 0}, Γ2 = {(x, y) ∈ ∂Ω1, x = 1, y = t},
Γ3 = {(x, y) ∈ ∂Ω1, x = t, y = 1}, Γ4 = {(x, y) ∈ ∂Ω1, x = 0, y = t},
Γ5 = {(x, y) ∈ ∂Ω2, x = −1, y = 1}, Γ6 = {(x, y) ∈ ∂Ω2, x = −1, y = t},
Γ7 = {(x, y) ∈ ∂Ω2, x = −t, y = 0}.

So, we will write the equation in simplify formula as the following:

9.1 The Dirichlet-Neumann method

This method is summarized by the following algorithm :18 for λ(0) given, we resolve for
each k ≥ 0, see ( Eq. 9)


−∆u

(k+1)
1 = f in Ω1

u
(k+1)
1 = ue on Γ3 and Γ2

∂u
(k+1)
1

∂n
= ∂ue

∂n
on Γ1

u
(k+1)
1 = λ(k) on Γ4



−∆u
(k+1)
2 = f in Ω2

u
(k+1)
2 = ue on Γ5

∂u
(k+1)
2

∂n
= ∂ue

∂n
on Γ6 and Γ7

∂u
(k+1)
2

∂n
=

∂u
(k+1)
1

∂n
on Γ4

(9)
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Figure 2: Domain Decomposition

with λ(k+1) = θu
(k+1)
2 |Γ4 + (1− θ)λ(k)

9.2 The Neumann-Neumann Method

This method is summarized by the following algorithm :19 for λ(0) given, we solve for each
k ≥ 0, ( Eqs.( 10, 11))


−∆u

(k+1)
1 = f in Ω1

u
(k+1)
1 = ue on Γ3

∂u
(k+1)
1

∂n
= ∂ue

∂n
on Γ1 and Γ2

u
(k+1)
1 = λ(k) on Γ4


−∆u

(k+1)
2 = f in Ω2

u
(k+1)
2 = ue on Γ5 and Γ6

∂u
(k+1)
1

∂n
= ∂ue

∂n
on Γ7

u
(k+1)
2 = λ(k) on Γ4

(10)



−∆ψ
(k+1)
1 = f in Ω1

ψ
(k+1)
1 = ue on Γ3

∂ψ
(k+1)
1

∂n
= ∂ue

∂n
on Γ1 and Γ2

∂ψ
(k+1)
1

∂n
=

∂u
(k+1)
1

∂n
+

∂u
(k+1)
2

∂n
on Γ4


−∆ψ

(k+1)
2 = f in Ω2

ψ
(k+1)
2 = ue on Γ5 and Γ6

∂ψ
(k+1)
2

∂n
= ∂ue

∂n
on Γ7

∂ψ
(k+1)
2

∂n
=

∂u
(k+1)
1

∂n
+

∂u
(k+1)
2

∂n
on Γ4

(11)
where λ(k+1)= λ(k)− θ(σ1u

(k+1)
2 |4−σ2ψ

(k+1)
2 |4) with θ an acceleration parameter. We take

in the sequence σ1 = σ2 = 1.
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9.3 The Robin Method

This method is summarized in the following algorithm :22 for u(0)2 given, we solve for each
k ≥ 0, (Eq. 12)

−∆u
(k+1)
1 = f in Ω1

u
(k+1)
1 = ue in Γ3

∂u
(k+1)
1

∂n
= ∂ue

∂n
on Γ1and Γ2

u
(k+1)
1

∂n
+ γ1u

(k+1)
1 =

u
(k)
2

∂n
+

γ1u
(k)
2 on Γ4



−∆u
(k+1)
2 = f in Ω2

u
(k+1)
2 = ue on Γ5 and Γ6

∂u
(k+1)
2

∂n
= ∂ue

∂n
on Γ7

u
(k+1)
2

∂n
+ γ2u

(k+1)
2 =

u
(k+1)
1

∂n
+

γ2u
(k+1)
1 on Γ4

(12)

γ1 and γ2 are positive acceleration parameters of the problem satisfying γ1+ γ2 > 0. We set
them to γ1 = 10 and γ2 = 0.1.

9.4 The Agoshkov-Lebedev Method

This method is a generalization of many other methods, and notably that of Robin seen just
above when we set pk = γ1 and qk = 1

γ2
. αk and βk are acceleration parameters (Eq. 13).

This method consists in solving, for u(0)2 and u(0)1 given, for each k ≥ 0, 23



−∆u
(k+ 1

2
)

1 = f in Ω1

u
(k+ 1

2
)

1 = ue on Γ3

∂u
(k+1

2 )

1

∂n
= ∂ue

∂n
on Γ1 and Γ2

∂u
(k+1

2 )

1

∂n
+ pku

(k+ 1
2
)

1 =
∂u

(k)
2

∂n
+

pku
(k)
2 on Γ4



−∆u
(k+ 1

2
)

2 = f in Ω1

u
(k+ 1

2
)

2 = ue on Γ5 and Γ6

∂u
(k+1

2 )

2

∂n
= ∂ue

∂n
on Γ7

−qk∂u
(k+1

2 )

2

∂n
+ u

(k+ 1
2
)

2 = −qk ∂u
(k+1)
1

∂n
+

u
(k+1)
1 on Γ4

(13)

u
(k+1)
1 = u

(k)
1 + αk+1(u

(k+ 1
2
)

1 − u
(k)
1 ) in Ω1

u
(k+1)
2 = u

(k)
2 + βk+1(u

(k+ 1
2
)

2 − u
(k)
2 ) in Ω2

10 Inverse Problem

By ”folding” Ω2 onto Ω1 in the previous algorithms, we obtain the algorithms to solve the
inverse problem. We take the same values, for the parameters, as in the part on domain
decomposition.24 and .25
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10.1 Dirichlet-Neumann Method

For given λ(0), we solve for each k ≥ 0, ( Eq.( 14))


−∆u(2k) = f in Ω1

u(2k) = ue on Γ3

∂u(2k)

∂n
= ∂ue

∂n
on Γ1 in Γ2

u(2k) = λ(k) in Γ4


−∆u(2k+1) = f on Ω1

u(2k+1) = ue in Γ3 in Γ2

∂u(2k+1)

∂n
= ∂ue

∂n
in Γ1

∂u(2k+1)

∂n
= ∂u(2k)

∂n
in Γ4

(14)
where λ(k+1) = θu(2k+1)|4 + (1− θ)λ(k) and θ > 0 is a parameter of acceleration.
( see Fig. 3,4,5)

It should be noted that this technique is not necessarily suitable, as long as one does not
make assumptions about the parameter θ or Ω1 and Ω2. However, if it is convergent, the rate
of convergence does not depend on the weight of the mesh. See19 for a proof of convergence.

(a) Approximate solution for Dirichlet-Neumann
with domain decomposition-Direct problem

(b) Error for Dirichlet-Neumann with domain
decomposition-Direct problem

Figure 3: Dirichelt- Numann Condition For Direct Problem

(a) Approximate solution for Dirichlet-Neumann
with domain decomposition-Inverse problem

(b) Error for Dirichlet-Neumann with domain
decomposition-Inverse problem

Figure 4: Dirichelt- Numann Condition For Inverse Problem
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Figure 5: Error in the Dirichlet-Neumann case as a function of the iteration number.

10.2 Neumann-Neumann Method

According to Bourgat et al.,19 the Neumann-Neumann method operates as follows (Eqs.( 14, 15)):
Set λ(0) to its initial value and solve for each k ≥ 0 ( see Fig. 6,7,8)


−∆u(2k) = f on Ω1

u(2k) = ue in Γ3

∂u(2k)

∂n
= ∂ue

∂n
in Γ1 and Γ2

u(2k) = λ(k) in Γ4


−∆u(2k+1) = f on Ω1

u(2k+1) = ue in Γ2 and Γ3

∂u(2k+1)

∂n
= ∂ue

∂n
in Γ1

u(2k+1) = λ(k) in Γ4

(15)
−∆ψ(2k) = f on Ω1

ψ(2k) = ue in Γ3

∂ψ(2k)

∂n
= ∂ue

∂n
in Γ1 and Γ2

∂ψ(2k)

∂n
= ∂u(2k)

∂n
− ∂u(2k+1)

∂n
in Γ4


−∆ψ(2k+1) = f on Ω1

ψ(2k+1) = ue in Γ2 and Γ3

∂ψ(2k+1)

∂n
= ∂ue

∂n
in Γ1

∂ψ(2k+1)

∂n
= ∂u(2k)

∂n
− ∂u(2k+1)

∂n
in Γ4

(16)

Considering i = 1, 2, with

λn+1 := λn − θ(σ1ψ
n+1
1 |Γ − σ2ψ

n+1
2 |Γ)

, in which σ1 > 0 are averaging coefficients and θ > 0 is an acceleration parameter In addi-
tion to being guaranteed to converge, the rate of convergence in the case of a discretization
with finite elements is independent of the mesh size.
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(a) Approximate solution for Neumann-Neumann
with domain decomposition-Direct Problem

(b) Error for Neumann-Neumann with domain
decomposition-Direct Problem

Figure 6: Numann-Numann Condition For Direct Problem

(a) Approximate solution for Neumann-Neumann
with domain decomposition-Inverse problem

(b) Error for Neumann-Neumann with domain
decomposition-Inverse problem

Figure 7: Numann-Numann Condition For Inverse Problem
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Figure 8: Error in the Neumann-Neumann case as a function of the iteration number.

10.3 Robin Method

For given u(1), we solve for each k ≥ 1, (Eq.( 17))

−∆u(2k) = f on Ω1

u(2k) = ue in Γ3

∂u(2k)

∂n
= ∂ue

∂n
in Γ1 and Γ2

u(2k)

∂n
+ γ1u

(2k) = u(2k−1)

∂n
+

γ1u
(2k−1) in Γ4



−∆u(2k+1) = f on Ω1

u(2k+1) = ue in Γ2 and Γ3

∂u(2k+1)

∂n
= ∂ue

∂n
in Γ1

u(2k+1)

∂n
− γ2u

(2k+1) = u(2k)

∂n
+

γ2u
(2k) in Γ4

(17)
where the acceleration parameters γ1 and γ2 are non-negative and satisfy the condition γ1 +
γ2 > 1 ( see Fig. 9,10,11)

(a) Approximate solution for Robin with domain
decomposition-Direct problem

(b) Error for Robin with domain decomposition

Figure 9: Robin Condition For Direct Problem

We notice that the error at each iteration for domain decompositions has a good appearance.
This is not the case for the inverse problem: we notice in fact a ”distance” from the solution
calculated in the case of Robin and Neumann-Neumann from a certain rank. Although we
don’t know the rate of convergence or estimates of the error reduction factor at each iteration,
the Robin method is guaranteed to converge.22
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(a) Approximate solution for Robin with domain
decomposition-Inverse problem

(b) Error for Robin for the inverse problem

Figure 10: Robin Condition For Inverse Problem

Figure 11: Error in Robin case as a function of the iteration.

10.4 Agoshkov-Lebedev Algorithm

Agoshkov and Lebedev proposed the non-overlapping domain decomposition algorithm by.?

This method consists in solving, for u(0) and u(1) given, for each k ≥ 1, Eq.( 18), (see Fig.
12,13,14)

−∆u(2k+
1
2
) = f on Ω1

u(2k+
1
2
) = ue in Γ3

∂u(2k+
1
2 )

∂n
= ∂ue

∂n
in Γ1 and Γ2

∂u(2k+
1
2 )

∂n
+ p2ku

(2k+ 1
2
) = ∂u(2k−1)

∂n
+

p2ku
(2k−1) in Γ4

u(2k) = u(2k−2) + α2k(u
(2k+ 1

2
) − u(2k−2)) ,



−∆u(2k+
3
2
) = f on Ω1

u(2k+
3
2
) = ue in Γ3 and Γ2

∂u(2k+
3
2 )

∂n
= ∂ue

∂n
in Γ1

−q2k+1∂u
(2k+3

2 )

∂n
+ u(2k+

3
2
) = −q2k+1

∂u(2k)

∂n
+

u(2k) in Γ4

u(2k+1) = u(2k−1)+β2k+1(u
(2k+ 3

2
)−u(2k−1))

(18)
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where pn, qn ≥ 0 and αn+1, βn+1 ∈ R are free parameters. This algorithm is a generalization
of many other methods, as the already mentioned Robin method Eq.( 17), which is obtained
by setting pn = γ1, qn = 1/γ2 and αn = βn = 1 in Eq.( 18).
Similarly,one can also obtain the Dirichlet-Neumann method Eq.( 14) by taking pn = qn =
0, αn = βn = 1, and by noting that the roles of Ω1 and Ω2 are reversed.

(a) Approximate solution for Agoshkov-Lebedev
-Direct problem

(b) Error for Agoshkov-Lebedev -Direct problem

Figure 12: Agoshkov-Lebedev For Direct Problem

(a) Approximate solution for Agoshkov-Lebedev -Inverse
problem

(b) Error for Agoshkov-Lebedev -Inverse
problem

Figure 13: Agoshkov-Lebedev For Inverse Problem

11 Numerical Results

In this part, we take ue(x, y) = x2 − y2. We therefore set f = 0. The initializations (u(0)

or λ(0) for example) are all placed at −y. First, we present the approximate solution and

then the error for all cases Then, we carry out the study of the error (norm L2(Γ4) of the
difference between the calculated solution and ue) as a function of the iteration number for
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Figure 14: Error in the Agoshkov-Lebedev case as a function of the iteration number.

all the algorithms (domain decomposition included).
Finally we make an approximation of the optimal acceleration parameter θ in the case of the
inverse problem.

11.1 Calculation of the optimal parameter

To solve the ICP optimally, it is crucial to select appropriate approximation parameters and
optimization strategies. These parameters guide the iterative optimization process to min-
imize the discrepancy between observed data and model predictions. In this section, we
present the number of iterations required as a function of the acceleration parameter θ .27

The Agoshkov-Lebedev algorithm is a generalization of the latter pk and qk deduced from
γ1 and γ2 with two acceleration parameters αk and βk.
We want to know the acceleration obtained with respect to Robin by varying these parame-
ters, so we do not perform this test for Robin. Furthermore, to simplify, we restrict ourselves
to the case αk = βk = θ. se Fig. ( 15,16)

(a) Iterations Vers. θ for Dirichlet-Neumann (b) Iterations Vers. θ for Neumann-Neumann

Figure 15: Iterations Vers. θ

Therefore we deduce that θoptimal ≃ 1.7 for the Dirichlet-Neumann algorithm, θoptimal ≃
1.15 for the Neumann-Neumann algorithm and θoptimal ≃ 0.5 for the Agoshkov-Lebedev
algorithm. We note that, in the Agoshkov-Lebedev case, another local minimum appears
unlike in the other cases. Finally, when αk = βk = θ = 0.5 in this case, we have an
answer in 9 iterations. While Robin returns an answer in 31 iterations. We therefore have
an acceleration of convergence.
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Figure 16: Iterations Vers. θ for Agoshkov-Lebedev .

12 Discussion

In this study, we studied four iterative methods for solving inverse problems of Burger
equation by using domain decomposition method. This method are based on four classi-
cal boundaries Dirichlet-Neumann, Neumann-Neumann, Robin and Agoshkov-Lebedev ap-
proaches. The aim was to analyze their efficiency in terms of convergence and to compare
the numerical results obtained.

• Dirichlet-Neumann method: The Dirichlet-Neumann method has shown good perfor-
mance in terms of convergence for domain decomposition problems. The approximate
solution converges quickly to the exact solution, with an error that decreases at each
iteration. However, for the inverse problem, the error tends to increase after a certain
number of iterations, suggesting that this method might be less efficient for inverse
problems, especially when the boundary conditions are complex.

• Neumann-Neumann method: Similar to the Dirichlet-Neumann, the Neumann-Neumann
method performs well for domain decomposition problems, with a reduction in error
over iterations. However, for inverse problems, the error also shows a tendency to
grow from a certain point. This phenomenon is particularly marked for methods that
use Neumann-type conditions, where the error propagation may be more sensitive to
changes in boundary conditions.

• Robin method: The Robin method, although effective for some inverse problems,
has a slower convergence rate compared to other methods. The study of errors has
shown that, in the case of the inverse problem, the error tends to stabilize after a
certain number of iterations, but this stabilization is slower than for other methods.
The acceleration parameters y1 and y2 have a notable influence on the convergence,
but even with these optimized parameters, the number of iterations remains relatively
high, which can make the method less competitive for complex inverse problems.

• Agoshkov-Lebedev method: The Agoshkov-Lebedev method, which is a generaliza-
tion of Robin’s method, has shown very good performance, especially with the accel-
eration parameters αk and βk. This method has made it possible to significantly reduce
the number of iterations required to obtain a satisfactory solution, especially by using
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optimal values to these parameters. In particular, in the case where αk = βk = 0.5, the
method converged in only 9 iterations, compared to 31 iterations for Robin’s method.
This shows the increased efficiency of the Agoshkov-Lebedev algorithm compared to
others, especially for inverse problems.

13 Conclusion

In conclusion, we can state that the tested domain decomposition methods for solving Burger
equation, in particular Dirichlet-Neumann and Neumann-Neumann, are efficient for solv-
ing standard diffusion of Burger problems. However, for inverse problems, the Agoshkov-
Lebedev method stands out for its ability to accelerate convergence, in particular thanks
to the use of optimal acceleration parameters. While Robin’s method is competitive for do-
main decomposition problems, it remains less efficient for inverse problems due to its slower
convergence rate.
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