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Abstract

The most widely used distribution for risk management data for modeling longevity is the one-parameter inverse
exponential distribution. Among alternative models, we suggest the neutrosophic inverse exponential (NIE) model,
which generalizes the extended inverse exponential distributions and the classical structure. For the suggested
model, we derive explicit formulations for the quantile functions, median, mode, cumulative distribution function,
and probability density function. Data generating process of the proposed model under neutrosophic environment
is discussed. To estimate the model parameters, we use the maximum likelihood approach. Using the proposed
model, we run the simulation setup for randomly generated data. A genuine data set is also used to support the
proposed model applicability.
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1. Introduction

Exponential distribution is one of the continuous probability distributions, which describes the time required to
complete an event [1]. It has many applications in modelling random events where each event occurs in discrete
but steady average frequency per time interval (period) e.g. waiting time between events in queue, lifecycle of
mechanical device, time until radioactive particle decay etc [2]. In telecommunications, it is widely used to model
the intervals of time between the arrival of data packets at a network router, assisting engineers in designing
efficient systems and predicting congestion [3]. In healthcare, for example, the exponential distribution is used in
estimating the time between one event and another of interest, e.g., time until a patient arrives in an emergency
room, time between hospitalizations [4]. A third use case is for reliability engineering, which uses the concept to
model the lifetime of machines or products to help schedule maintenance periods or assess the performance of
warranties [5]. In the area of medicine, the exponential distribution is also important in survival analysis, which
deals with estimating how much time they will last new coming events, such as how long it takes for a particular
treatment to fail or how long it takes for a patient to recover [6]. It is also used in finance to model the time until
the next major event for stock prices or an insurance claim. The exponential distribution is a powerful and flexible
tool with wide-ranging applications, providing insights into systems where events occur randomly and over time
in diverse sectors.

The importance of understanding inverse of probability distributions is even more apparent when modelling
various real-life scenarios where we are interested in the reciprocal of the random variable like 1/X' The
distribution of the inverse is useful in various circumstances, such as when a random variable assumes a specific
distribution (e.g., exponential, normal, among others) [7]. As an illustration, such a variable with an exponential
distribution has an inverse that can represent the distribution of time between rare events, such as system failures
or arrivals to a queue. Linear transformations of gaussian distributions tend to be highly beneficial and useful
across various domains such as finance where inverse proportionality often occurs in terms of returns or prices.
The inverse distribution can also be helpful in other contexts, like in queuing theory or reliability engineering,
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where the inverse distribution can provide insight into waiting times or failure rates of systems whose outcomes
are inversely related to some underlying factor [8]. Hence, the applications of those inverse distributions are
applicable to various fields including telecommunications, healthcare, engineering, and economics [9].
Researchers and professionals analyze the behavior of the inverse of a distribution to gain insights into processes
that exhibit reciprocal relationships, enhance predictive accuracy, and optimize decision-making under
uncertainty. Inverse distributions are imperative in broadening the applications of probabilistic models and offering
solutions to difficult real-life problems.

This is a significant reason why fuzzy theory and fuzzy random variables are necessary in practical problems
involving uncertainty and imprecision, which are beyond the scope of the probabilistic framework [10]. While
traditional probability theory is based on the assumption of clear-cut outcomes with some chance of occurrence,
Fuzzy set theory allows for ambiguity and imprecision when information is available, enabling a more nuanced
representation of scenarios. Fuzzy random variables generalizes this factor with both fuzziness and randomness
and are useful for system characterized with uncertainty and imprecision [11]. In fields such as decision-making,
engineering, and artificial intelligence, human intuition and unclear data are common elements, making this
extremely valuable [12]. Examples of such applications include fuzzy random variables in supply chain
management, where they can be employed to effectively represent uncertainty in demand and supply, providing
realistic predictions and supporting better decision making [13]. In medicine, they are used to model the potential
range of outcomes or treatment effectiveness for patients, even when we do not have exact data. Controller systems
also use the fuzzy theory since it enables to process of imprecise sensor inputs and have optimal performance in a
varying environment. An example of this is fuzzy logic and fuzzy random variables which translate vague concepts
into mathematical terms, allowing for ranges of truth rather than true/false, thus making it possible to quantify the
uncertainty about data a crucial ability in domains ranging from robotics to finance, which often requires operations
on incomplete or rough data [14-16]. The neutrosophic set is a generalization of the fuzzy set, which introduced
the concept of extending certainty into three parts: truth, indeterminacy (the truly unknown part that the state of a
natural system may have) and falsity [17-18]. Neutrosophic sets, in comparison to classical sets that only accept
true or false membership, can define an element as partially member of a set with degrees of membership that
ranges from truth, falsity, and indeterminacy, which makes the neutrosophic set ideal for modeling complex,
messy, and real-world systems where information is often ambiguous or partial in nature. It is used in the context
of statistics by neutrosophic statistics to add new tools oriented towards working with uncertain or incomplete data
[19-21]. This approach is useful in situations where traditional statistical methods fall short; it allows researchers
to analyze data that is obfuscated, ambiguous, and even contradictory. It is used in many fields including decision-
making, data mining and artificial intelligence where conflicting or missing information is a major issue [22].
Neutrosophic statistics is one such area that extends the scope of traditional statistics by providing tools and
techniques to account for uncertainty and vagueness in data. Unlike fuzzy sets that represent uncertainty based on
a single degree between 0 and 1, neutrosophic sets involve multiple degrees of freedom for each element
representing truth, indeterminacy and falsehood [23]. The increased flexibility of neutrosophic sets enables it to
deal with scenarios involving uncertain, inconsistent, or incomplete data, making it a more potent method for
describing complex uncertainties than fuzzy set theory itself. Conventional probability distributions cannot
represent vagueness, uncertainty, and incomplete information that show up in real-world problems; hence, the
development of neutrosophic probability distributions is of utmost importance to cope with uncertainty, vagueness,
and incomplete data [24-26]. The ability to split distributions into components of truth, indeterminacy, and falsity
provides an extension of classical probability theory that is more suitable to complex systems [27]. New
neutrosophic probability distributions have been introduced in the last few years, with the focus of their
applications in decision-making, reliability engineering, risk analysis, and artificial intelligence. The state of
indeterminacy within phenomena has led researchers to generalizing standard distributions, such as the
exponential, normal, and Weibull distributions, through neutrosophic extensions [28]. In addition, for the analysis
of neutrosophic distributions, advanced computation methods and software packages have been developed to
incorporate neutrosophic distribution into statistical inference and machine learning algorithms [29]. With their
nature, these developments eased resolving multi-criteria decision-making issues, industrial process optimization,
and uncertainties in economic and environmental systems [30]. Over time, neutrosophic probability distributions
have emerged as valuable tools for modeling uncertainty in situations where traditional probabilistic approaches
fall short.

In this study, we introduce a new distribution called the NIE model, and it changes the game in modeling
uncertainty, indeterminacy, and vagueness, especially in industrial applications. This approach reflects the more
realistic scenarios where there is uncertainty, which cannot be modeled by classical distributions, through
integrating neutrosophic components into the classical exponential distribution. Its benefits include improving
decisions in industrial decisions with uncertainty, for instance in reliability analysis, resource allocation and risk
management. This extension creates new opportunities for improving decision accuracy, system performance, and
sustainability in complex industry.
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The rest of the work is organized as: In Section 2, neutrosophic extension is described. Section 3 explains quantile
function of the proposed model. In section 4 the estimation procedure is demonstrated. Section 5 discusses a real
application of the model and Section 6 provides a final summary of the work.

2. Proposed Neutrosophic Extension

In this section, essential statistical characteristics of the proposed NIE distribution are described in detail. The
probability density function (PDF) is a crucial piece of information in probability, as it shows the probability of a
continuous random variable taking on a specific value. It is therefore often used to model and understand the
behavior of many different types of random phenomena in a number of fields. Neutrosophic structure merges the
concept of truth and falsity into the framework of PDF, allowing for the consideration of various relationships
among components, tolerance to inexactness, and other difficulties in using traditional PDF. As this extension
incorporates neutrosophic components into the PDF, which enables expressing undefined, vague, or partially

known data. A random variable Z is assumed to follow the NIE distribution if it has the following PDF structure.

oy -
fZ(z;ON)zz—ze z,2>0,0,z=20 Q)

Note that the random variable is imprecise because of indeterminacy 8y = [0, 0,].
The closely related function to PDF is the cumulative distribution function (CDF) which is defined as given below:

v

FZ(Z;GN)=6_Z,Z>0; O,ZSO
Expression given in Eq. (2) can be easily established as:

Fz(z;0y) =f fz(t;6y) dt
0

z eN _e_N
o t
Substituting transformation u = 97”, du = —2—’2" dt
Fy(z;0y) = foye™ du )
Further simplification to Eq. (2) resulted the desired expression
0
F;(z;0y) = 6_7N,Z >0 (3)

The CDF is an essential aspect of probability theory, being a function that indicates the probability that a random
variable takes on a value less than or equal to the value of the desired point. It takes a vital role in determining the
spread of data, studying cumulative probabilities, and drawing statistical predictions. The CDF neutrosophic
extension brings additional richness by introducing truth, indeterminacy and falsity, which can prove convenient
when data is under uncertainty or lack of completeness. The neutrosophic version of probability offers a more
precise modeling of many real-life systems where the precise probability of an event is difficult to determine, such
as decision making under uncertainty, risk assessment or complex imprecise phenomena modeling. The
neutrosophic CDF, on the other hand, accommodates ambiguity by taking into account both known and unknown
attributes of the data, offering superior decision-making and predictive capabilities in applications where
traditional CDFs prove inadequate.

To clarify the difference of this model with the classical structure we sketch the PDF and CDF of the classical
model in Figure 1.
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Figure 1. Classical curves of the PDF and CDF of the inverse exponential distribution.
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In Figure 1, it can be seen that that each curve is represented by precise value of distribution whereas in the
neutrosophic this value is not precise number but representing an interval value. To see this difference, Figure 2
and Figure 3 are constructed respectively for PDF and CDF of the proposed model.
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Figure 2. PDF curves of the proposed model with different parameter setting.
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Figure 3. CDF of the proposed model with different parameter setting.
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The PDF of the neutrosophic inverse exponential distribution is shown in Figure 2, in which the probability of the
random variable is given for various values. It is fatty curve because of indeterminacy in distributional parameter.
The PDF exhibits an unprecedented characteristic in that the distribution models uncertain values but also
reflections of truth to model both extreme absolute certainty and extreme absolute uncertainty in the context of
classical exponential distributions. As we might expect, the distribution is skewed, with greater probability near
the origin, meaning smaller values have higher likelihood. Figure 3 describes the cumulative probability of the
random variable represented by the neutrosophic inverse exponential distribution having any value less than or
equal to a particular point. While the CDF ranges from 0 to 1 monotonically, the presence of neutrosophic elements
leads instead to a gradual progression, one which accounts for indeterminate and imprecise values. These together
characterize the improved flexibility and accuracy of the neutrosophic inverse exponential distribution to model
such uncertain systems, leading to a more complete grasp of this distribution behavior for different scenarios.
These neutrosophic structures are quite useful in some domains where there is uncertainty and vagueness,
including decision-making, risk analysis, reliability engineering, etc.

The survival function is another important related function in distribution theory. The survival function describes
the probability that a subject or system will survive past time t. It is a key model in reliability engineering, survival
analysis, and other fields where time is an event is of interest. It is used in healthcare to predict the likelihood of
patients surviving, in insurance to determine life expectancy, and in manufacturing to assess the durability of a
product. The survival function is a complementary function to the probability density function (PDF) and
cumulative distribution function (CDF), as it provides a different point of view—aiming at the tail probabilities,
which are very important to assess extreme events or long-term behavior. The capability of the model to deal with
uncertainty can be increased even more when the model was extended to neutrosophic or fuzzy frameworks, which
has provided it a wider application field in real problems that may be described with incomplete or imprecise data.
The survival of the proposed model is defined as:

On

S;(z;0y)=1—€e"2,2>0;1,2z<0 4)
Similarly hazard function of the proposed model can be defined as:
f2(z;6y)
h,(z;0y) = ———
2(% On) S7(z; 0y)
oy,
hz(2;60y) = “—57 (®)
1-e z

The cumulative hazard function of the proposed model is defined by:
H(z) = f h(t) dt
0
Hy(z0y) =2, 2> 0; 0,z < (6)

The mean is a basic and importance property of any distribution. It can be defined as:

E[Z] = fooozfz(z) dz (6)
E[Z] =J0 Z-Z—Ze_GTNdz
N
E[Z] = GNfO ~ dz
E[Z] = oo

This shows that mean does exist for the proposed model. This leads to inexistence of variance. However, we can
find the other central measures tendency. The median is another position average, and it can be defined for the
model as:

0
Fz(z; GN) = e_TN, z>0 (7)
Fz(m, eN) = 0.5
on
e"m =05 ©))
Further simplification of Eq.(8) yielded:
0
——= =1n(0.5)
O
= = 1n(2)
m
- )

@
Thus the model of the proposed distribution can be found using expression given in Eq (9).
The model of the proposed model can be found by:
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2 f2(z6y) =0 (10)
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E(z_ze ) e\ T

Sy oo ozey | 63
ee (-ZE+M) =0 (11)
Simplifying Eq. (11) resulted:
20y 6%
Tl

z=0 (12)

2
which is required model value of the proposed model.

Now in the next section, we will see how the neutrosophic random samples can be generated using the quantile
function of the proposed model.

3. Random Sample Generation

Random samples generation using the inverse CDF method is discussed in this part. The inverse CDF method is a
commonly used method for generating random samples from a given probability distribution. The technique
exploits the property of a continuous random variable where the CDF is a mapping between the range of the
random variable and the interval 0,1. To produce a random sample, we first draw a uniform random number from
the interval 0,1. The uniform random number is passed through the inverse of the CDF of the neutrosophic
distribution, to generate the number from the distribution required. This value is a random sample from the desired
distribution.

The CDF function of the proposed model is given by:

]
Fy(z;0y) =e 7
Equating the expression to uniform model provided:

F;(Q(p);6y) =p (13)
Solving (a) yielded:
Q) =—2,0<p<1 (14)

Now write a simple program in R, we can generate random samples from the proposed for different parameter
settings. If we assume that 8, = [0.5, 2], then random samples of 30 values are given in Table 1.

Table 1: random samples generation from the proposed NIE model

Random Samples

[6.17,24.69]  [1.04,4.19] [0.86, 3.47] [0.98, 3.92] [0.98, 3.93] [15.32, 61.28]
[1.95,7.82] [0.29, 1.19] [3.17,12.70]  [1.75,7.01] [0.25, 1.02] [0.29, 1.19]
[0.27, 1.08] [1.21,4.86] [0.41, 1.64] [0.38, 1.55] [1.58, 6.341 [0.42, 1.70]
[0.48, 1.94] [0.90, 3.63] [0.20, 0.82] [1.74, 6.97] [1.89,7.59] [3.15, 12.61]
[0.32, 1.30] [6.50,26.02]  [5.57,22.28]  [0.73,2.93] [12.00,48.02]  [3.85,15.41]

Table 1 shows the thirty random samples from a proposed model with parameter fixed at 8 = [0.5, 2]. Each
record takes the format of a pair of intervals with the lower bound and upper bound, to account for the uncertainties
within the neutrosophic model. A specific random seed creates these values; any other random values with the
same parameter settings will return a different value based on that seed. The random generated intervals can then
be used to analyze the statistical properties and behaviour of the proposed modelling system, or its applicability in
a real-life scenario, which involves both uncertainty and indeterminacy.
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4. Estimation Using Sampling Data

In this section, we will discuss the estimation procedure for the proposed model. The Maximum Likelihood
Method (MLM) plays a crucial role in statistical inference as it provides a solid foundation for parameter estimation
in probabilistic models. You find parameters that maximize the probability of observed data given a certain model
with a set of parameters in a statistical method. This approach is favorable not only in terms of its consistency but
also in terms of efficiency and asymptotic normality: it provides reliable estimates, which becomes more and more
accurate as the size of the sample grows. It is widely used, as it is applicable in various fields including, economics,
biology, engineering and numerous fields in machine learning, hence a fundamental toolbox for data analytics. It
is flexible enough to address joint dependencies, very complex models that do not just involve observing outcomes
(e.g., censored data, latent variables, mixtures, etc), where other approaches have failed. The Maximum Likelihood
Method (MLM) for parameter estimation of neutrosophic distributions in the absence of uncertainty is modified
to incorporate the uncertainty, which is a characteristic of the neutrosophic data. In contrast to classic MLM, where
it is assumed that observations are precise and deterministic, the neutrosophic maximum likelihood method
(NMLM) generalizes the likelihood method by including neutrosophic parameters, i.e. intervals or fuzzy sets. The
likelihood function for the sample z;, z,, ... z, is given by:

oy -
InL(8y) =YY", In (z—’;'e % ) (15)
The log-likelihood expression is given by:

_bN
InL(6,) =¥",In (9—% zi ) (16)
Further simplification resulted:
0
InL (By) = Xis1In(0y) — 23X, In(z;) — ?:12_? (17)
Derivative of Eq (15) with respect to unknown parameter yielded:
a 1 1

mln L(By) = ?:1& - ?:12_1, (18)
Equating Eq (16) to zero provided:
= n

Oy = (19)

i

which is required to estimate the distribution neutrosophic parameter.
Now how we can understand the estimation procedure using a simple Monte Carlo experiment. A simple program
can be written in R that generates random data from the proposed model using quantile function and then estimate
of unknow parameter based on sample data can be found. In this experiment, we suppose that true value of

neutrosophic parameter 8, = [2, 3.5] and estimate the true values using random sample data for different sample
size n = 25,50,100, 200, 300.The output of this experiment is given in Table 2.

Table 2: Maximum likelihood estimates of the unknow parameter at various sample sizes

Sample size Estimated value
25 [2.45,2.88]

50 [1.74,2.87]

100 [2.25,3.31]

200 [2.03, 3.50]

300 2.02,3.31]

From the inverse exponential distribution, Table 2 indicates neutrosophic evaluations of the true parameter 8y =
[2,3.5] for diverse, sample sizes. The intervals represent the range of estimated values, with the upper and lower
bounds of the intervals representing uncertainty in the parameter estimation. This shows that as the sample size
becomes larger, the estimated values become stable and lie within the intervals closer to the true intervals, showing
that the neutrosophic approach is robust against the imprecision and uncertainty in parameter estimation.
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5. Real Data Application

In this, we have employed the proposed model for analyzing electricity demand data for Saudi Arabia from year
2000 to 2020. The data reflects the energy sector, whose analysis is crucial for policymakers and strategic planning
to support the needs of a country's growing population and development. The dataset shows Saudi Arabia annual
electricity demand in gigawatt-hours (GWh) from 2000 to 2020 taken from reported [31]. The growth rate in
electricity consumption was consistent with the rapid urbanization process, industrial expansion and population
growth of the country during this period. This growth can be attributed primarily to Saudia's continued
development with Vision 2030 goals focusing on residential, commercial, and industrial activities, including
further economic diversification and modernization. Our power generation statistics are necessary to national
energy planning, as it is essential to know how much investment must be made in infrastructure and sustainable
sources of energy and electricity management to address the growing demand. In addition, this knowledge helps
decision makers to tackle issues like peak demand, energy security and environmental issues while ensuring long-
term energy sustainability for Saudi Arabia. Consumption numbers are always fraught with uncertainty because
of data collection errors, demand forecast differences, seasonal effects, and business cycle effects. Instead of exact
observations, the data is converted into neutrosophic type, based on the method used in [32], to cure this vagueness.
By extending the analysis to include degrees of truth and falsity, and identifying indeterminacy, we form a rigorous
foundation for uncertainty in energy planning. The electricity consumption neutrosophic data is given in Table 3.

Table 3: Electricity consumption data for Saudi Arabia for the time 2001-2020

[116123.7, [123574.2, [130747.6, [139875.1, [150233.1,
116124.3] 123575.8] 130748.4] 139876.9] 150234.9]
[162587.0, [175993.5, [190253.1, [205486.5, [221761.5,
162587.0] 175994.5] 190254.9] 205487.5] 221762.5]
[239086.0, [257425.5, [276511.3, [295870.4, [315733.9,
239088.0] 257426.5] 276512.7] 295871.6] 315734.1]
[336023.1, [349122.8, [357652.0, [360244.7, [358199.0,
336024.9] 349123.2] 357652.0] 360245.3] 358201.0]

Table 3 shows that consumption data is given in interval form so classical model is not suitable for analyzing this
data whereas proposed model may be adequate for such type of data. Using the MLE program written in R,
estimated value of the NIE distribution can be determined which is given below:

By = [206064.4,206065.7]

This shows that estimated value based on Eq (17) is vague value because of existing imprecise data. Now the other
statistical properties such as median and mode based on this interval information can easily be obtained.

6. Conclusion

In this study, we have proposed the neutrosophic inverse exponential (NIE) distribution as a suitable extension of
the traditional inverse exponential distribution for modelling uncertain data in risk management, particularly in
terms of longevity. We derive closed-form expressions of important statistical functions such as the quantile
function, the median, the mode, CDF and PDF. Robust fitting to the data is assured through the maximum
likelihood estimation method of parameter estimation in the proposed model. By means of simulations and use on
real data, we show the applications and versatility of works with the NIE model, which allows to provide a way of
generality of modeling uncertainty or imprecision data in risk management. Our results indicate the reliable
estimation results can be obtained using larger sample size data. Finally, we have also shown the effectiveness and
usage of the proposed model using the real data on electricity consumption data facing uncertainties. Numerical
results from real data example show that proposed model is equipped with functionality to analyze imprecise data
set.
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