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Abstract

This paper investigates the B« operator, constructed from the Neutrosophic g-Poisson distribution series. The
study examines this operator within the realm of geometric function theory, focusing on key characteristics such
as coefficient bounds, growth and distortion behavior, and the determination of convexity and star likeness radii.
Additionally, the paper explores the weighted and arithmetic means of functions associated with this operator and
analyzes its closure properties under the Hadamard product.
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1. Introduction

Letting 3 represent the class of function 8 that are analytic within the open unitdisk D = {z:z € C,|z| <
1} and can be expressed in the form.

S@ =1+ ) anz" (1.1)
m=2

Suppose Pt represent the subclass of functions within 3 characterized by the following form:

3@ =3— ) anz" (1.2)
m=2
If 3(z),G(z) € MWt then their Hadamard product is
3(z)=z—zam z“‘,g(z)=z—zbm z" (1.3)
m=2 m=2

A function J (z) is considered starlike in the domain D if J: D — C is univalent and maps D onto a starlike
region with respect to the origin. Furthermore, 3 (z) € 5 is defined to be starlike of order o< if it satisfies the
following condition.

23'(2)
Ke <W) > (14)

for some «, 0 <o < 1, and for all z € D, refer to [1, 2].
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A univalent function 3 (z) € 3 is considered convex of order o if and only if zJ ’ () is starlike of order «. To
rephrase, if
(1.5)

S"
ﬁe(1+z (Z)>>oc

3'(2)
for some «, 0 <« < 1, and for all z € D. Furthermore, a univalent function I (z) € 3 is said to be close-to-convex
of order o if

Re(z3 ' (2)) >« (1.6)

for some o¢, 0 < oc < 1, and for all z € D. Symbolize by Si and K, the classes of univalent starlike and univalent
convex functions of order o, respectively see[2].

Neutrosophic theory, introduced by Florentin Smarandache, enhances classical and fuzzy logic by incorporating
three elements: truth (T), falsehood (F), and indeterminacy (1). It is designed to handle uncertainty, ambiguity, as
well as contradictions, making it suitable for the examination of complex and unclear phenomena.

This concept is widely employed in fields like artificial intelligence, decision-making, and data analysis, offering
solutions for problems associated with inadequate or inconsistent information. Neutrosophic concepts have shown
effective in disciplines such as engineering, computer science, as well as social sciences over time [3-5].

[6,7] A discrete random variable @ is described as following a g-Poisson distribution if it takes the values 0, 1, 2,
3, . .. with corresponding probabilities.

-M -M -M
Y Me% Mze@ MSe@

T, Bl .7)
where M is the parameter, eg is the g-exponential function defined as
=1+ 1 o + o +---=§9m (1.8)
’ [, " 2l B! £ Tml,!
[m],! = [m],[m —1],,--,[2],[1], is the g-factorial function see[8].
For a g-Poisson distribution, the probability mass function is expressed as
e%—M Mym
PO =m) = [m—M,m =0,1,2,.... (1.9)
The corresponding g-Poisson distribution series is defined by
e M MY
7,(z) =Z+Zhg“,;e7) (1.10)
n=2 3

The radius of convergence for this series is infinite, as determined by the ratio test [7]. Extending this concept,
neutrosophic theory—introduced by Smarandache in 1995—provides a framework for handling imprecise
parameters. For instance, the neutrosophic g-Poisson distribution modifies the classical distribution by considering
an interval-valued parameter mX. Its probability mass function is

e%—mx. (mx)%
%],

where X = d + [ represents a neutrosophic statistical number, and both the expectation and variance are m«. The
neutrosophic g-Poisson distribution series is given by

RP, (0 = &)= (1.11)

e%—mx. (mx)lm—l

M, (mR,7) =7+ Yo, [m-1],!

z",z72€D (1.12)
According to [3, 9], the linear operator B,,x: 3 — 3, defined via convolution (Hadamard product), is given by

(mx)lm—l
— a,z",Zz€D (1.13)

it —mN.
‘Bmx(s (Z)) = Mq(mx, 2)*3(g) =z+ Zeq[]m—l]'
n=2 9*

This new class is introduced as a generalization of the classes defined in [2, 10, 11].
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Definition: A function I (z) in M is in the class Fpx(9, ¥, 3, 6, 1) if and only if it satisfies the condition:
922 Buux(3 @)]" + 7 (3] Beax(3@)] = Buu(S 2))
832 Bax(3 @)] + (1~ ) Bux(3 @)
wherez € D,0<y<1,0<3<1,0<n<1,§=20,and0<p<1.

<n

For the header and the footer, just change the journal name and the abbreviation, then leave all other information
for our production team at the ASPG editorial office to be updated after your paper acceptance.

This article gives linear model, which is the direct simplex method using neutrosophic logic, the logic that is the
new vision of modelling and is designed to effectively address the uncertainties inherent in the real world founded
by the Romanian mathematician Florentine Smarandache [1, 2]. In addition to that, Ahmed A. Salama presented
the theory of neutrosophic classical categories as a generalization of the theory of classical categories [12,20], also,
he developed, introduced, and formulated new concepts in the various disciplinary of mathematics, statistics,
computer science by neutrosophic theory [17,18,19,22,28].

2. Coefficient Estimate

This theorem delineates the requisite and adequate condition for a function to be classified inside the class
me(g,]}”. }' 6' 1'1)

Theorem 2.1. Define the function J as specified in (1.2). Then I (z) is an element of Fpx (9, ¥, 3, &, 1) if and only
if
Z mR)™e;™[(m—D(en+p) + MO +1—pP)|ay <p@+1-pPm—1],0 (21
n=2
wherez € D,0<y<1,0<3<1,0<n<1,6§>0,and0<9<1.
The result (2.1) is sharp for the function
n(Aé+1—-p)[n-—1],!
Y, (mX)™1e™[(m — 1)(em + ) + n(m&3 + 1 — )]

3@ =1 2 (22

Proof: Assume that inequality (2.1) is valid and that |z| = 1. Subsequently, we acquire

|97 [ Bax(3@)]" + 7 (3] Buns(3 @)] = Baan(S @))| = 16307 Baue(3 @)]' + (1 = 1) Buu(S @)
(2.3)
® X n-1,-m&
- mzz(ml ~1)(m + y)%amzm
B+ -1z

(mx)m—leqtmmx .
m—1],! ™

-1

— ) Mmsr+1-yp)
2

mn

(2.4)

-1,-mK
(mx)]m 1e%m

SZ[(H‘H—l)(Q]m+]]V)+1’[(11115J+1—]V)] ap—nMmér+1—-p)<0

L [m—1],!
(2.5)
Hence, by the maximum modulus principle, 3 (z) € Fx(9, %, 3, 6,1,
Now, assume that 3(z) € Fpx(9, 7,3, 1) S0 that.
22%[ Bux(S @)]” + ¥ (2 Bux(S @)] = Buux(3 @)
833 Bex(3 @)] + (1~ 1) Buus(3 @)
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Hence

1972 Baux(3 &))" + 7 (2 Baax (S @)] = Buax(S @))| = 1|63z Bran (3@)] + (1 = ¥) Boun(S )|

Therefore, we get:

( )Jm—legmnm N o ( N)]m 1 —mx i
Zom —Den+ P = (B A =Pz ) @S+ 1) —ay
[m — 1],/ o [n — 1],!
Thus
( N)ml 1 —my
Z [~ D(on +1) + (a6 + 1= Pt —ay S (@ +1-7)
n=2 %
(2.6)
Thus, the proof is complete.
Corollary 2.2. If 3 (z) € Fux(9, 7,3, 8,1) then we have:
6r+1-— -1
1( y)m—1],! @

“n = mR)m e, ™ [(m — D(gn + ) + 1(md3 + 1— )]

3. Growth and Distortion Theorems
In this section, we delineate the growth and distortion constraints for the class Fp,x (9, ¥, 3, 8, 1.

Theorem 3.1. If 3(z) is an analytic function given by (1.2) and 3 (z) € Fx(9, 7,3, 6,1), then for 0 < |z] =
r<l,

o n@ér+1-y) 5
13 @)= r s r
( R) e, ™ 29 + ¥ + 1263+ 1 —p)]
and
n@r+1-7y) ,
~ < r+ 3.1
S @< 7t ey ry rna L1 (3.1)
These bounds are precise, as they are achieved by the function.
néi+1—-1y) 5
R =7 3.2
3@ =13 (mR) e, ™ [29 + ¥ +n(263 + 1—y)]% 3.2
Proof. According to Theorem 2.1, we get
( N)]m 1 —mR
Z [(m ~ D(em +7) + (O + 1= P s S0 +1-7)
n=2 9
and
(m¥)e; ™ [29 + ¥ + n(263 + 1 — )] Z anp <n@ér+1-—1yp), (3.3)
n=2
Thus,
- 41—
Z a < __ n( ¥) 3.4
~ (mR)e; ™ [29 +y +n(263 + 1 —y)]
For 3 (z) € Fmx(9,7,3,6,1) , we obtain:
233

DOI: https://doi.org/10.54216/1]INS.250419


https://doi.org/10.54216/IJNS.250419

International Journal of Neutrosophic Science (IINS) Vol 25, No. 04, PP. 230-239, 2025

S@I=[5- ) aw”| <zl + 13 ) a
mn=2 n=2
S +1—
< r+ _ N"( v) »2 (35)
(mR) e, ™29 + ¥ + (263 + 1 —y)]
Similarly,
S@I= 5= @’ 212~ 12 ) a
n=2 n=2
S+1-
n( ¥) ) 3.6)

=T T mN) e, ™ 29 +y + 2B+ 1-p)]

This completes the proof.

Theorem 3.2. If 3 is an analytic function defined by (1.2) within the class Fpx(9, 7,3, 6,1n), then for 0 < |z| =
r<l,
2n(r+1—-1y)

o~ ! 2 1 — ’
13" (@)1 (my) e;™ 29 +y +n2A+1—-p)]

and

2n(6r+1—17p)

3’ <1+
3@l (mR) e, ™ [29 + ¥ + (263 + 1 — )

] . 3.7

The result is exact for the function J (z)defined in equation (3.1).

Proof: For 3 (z) € Fmx(9, 7,3, 8,1, we have

5'@I={1-) maz" <1412 ) ma, (38)
mn=2 n=2
Substituting the bounds of }.o_, ma,, we obtain
2n(6r+1—-1yp)
3’ <1+ . 3.9
5@ (mY) e;™ 29 +y + N2> + 1 — )] 39
Alternatively, we also obtain.
5/ @)1= (1) mawz*| = 1-12l ) na, (3.10)
mn=2 n=2
which leads to
2néx+1—
5@l 1 ¢ L2 r @D

~ (mR) ;™29 + ¥ + (263 + 1 — p)]
This completes the proof.
4. Convex Set

Theorem 4.1. The class Fp(9,%,3,6,1) is a convex set.
Proof. Letting I and G be functions belonging to the class Fpx(9, ¥, 8,1). We need to demonstrate that for
every0 < p < 1, the function formed by the convex combination of 3 and G also belongs to the same class.
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We have

(1-03@+0G(@) =2~ ) [ -an+oblz"  (42)
Using Theorem 2.1, we find -

* (mx)n—le;mx
Dl = 1)(em + ) + 083+ 1 = )] ———"—[(1 - 0)ay + oby]
— [m—1],!

=(1-0) ) [(m=1)(en+7)+ 7@ +1-7)]

mn=2

+0 ) [(m—1)(em +7) + (03 + 1= )]

n=2

-1,-my
(mx)n le%mm

m—1),! ™

N n—1,-mX
%bm. (43)

Since both J(z) and G (z) satisfy the class conditions, it follows that:
SA-om@Br+1—-p)+onGr+1—y)=n6r+1—-7yp) 4.4

Thus,

(1-20)3(2) +09(2) € Fux(2,7,3,6,1)
completing the proof.

5. Radii of Convexity and Star likeness

In the subsequent theorems, we ascertain the radii of convexity and starlikeness for the functions belonging to the
class Fx(9, 7,3, 6,1).

Theorem 5.1 Let 3 (z) € Frx(9, ¥, 3, 8, 1n). Then the function 3 (z) is univalent convex of order (0 < i < 1)

in the disk |z| < R, where
1

@ =) mR) e ™ [(m — 1) (em + p) + n(méd + 1 — p)]|*T
R, = inf (5.1)
n22 nm(m—y))(63+1—p)[m—1],!
The outcome is sharp for the function 3 (z) given by (2.2).
Proof: It is enough to show that
23 "(2)
—|<1-y, 0<y <1 5.2
57 b o<y (52)
for |z|] < R,. Expanding I ' (z) in a power series, we have:
3'@) =1~ naz™! (5:3)
n=2
Thus,
[ o -1 0 m—1
z;s, () < Ln=2 mgm Ja Izl_1 (5.4)
37 (2) 1-2Y5o, may|z|"
For the inequality to hold, it suffices that:
Ya=2 m(m — Day|z|* "
<1- .
-5, nagar - Y ¢
Using Theorem 2.1, this is true if:
n(m —)) i7" < (mR)" e, ™ [(m — 1)(om +¥) + n(mé) + 1 — )] 5.6)
1—yp 2= N +1-p)m—1],! '
Then
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w1 [(1 — ) (mR)" e, ™ [(n — 1)(om + y) + n(mé + 1 — )]
|z|""! = inf

1@+ 1 p@m—)m - 1], ] 57

m=2

Setting |z| = R,, we get the desired result.

Theorem 5.2 Let 3(z) € Fx(9, ¥, 3, 6,1). Then the function J (z) is univalent starlike of order (0 < ¢ < 1)
in the disk |z| < R,, where

1
R, = inf [T e ™M= Dlen+ p) 1A+ L-PIFT - o
27 22 nm—y)(63+1—p)[m—1],! '
The result is definitive for the function 3 () as specified in (2.2).
Proof: It suffices to demonstrate that:
Zg(g)—1 <1-y 0<yp<l (5.9)
for |z| < R,. Expanding 3 (z) in a power series, we have:
4 [ee] _ n-—1
23°() | Znme (M~ Daglg| (5.10)
3 @) 1= aglz|"?
Thus,
00_ _ 1 m-—1
iz (m—Daglg] . 5.1

1 _Z;?:Z a]ﬁll%lm_l B

For the inequality to hold, it suffices that

n—y o (mR)" e;™[(m—1)(on + ) + n(mér + 1 —p)]
T E n@+1-p)m—1],! (5.12)
Using Theorem 2.1, this is true if
_ m—1,-mX _ _
5"t < (1 —)(mR)" e, ™ [(m — 1)(m + ¥) + n(né3 + 1 — )] (5.13)

n(m—¥)(63+1-p)[m—1],!

Setting |z| = R,, we get the desired result.
6. Weighted Mean and Arithmetic Mean

Definition 6.1: The weighted mean D, (z) of 3(z) and G () is defined by
1
() =510 -03@ + (1 +DGHB)], 0<{<1 (61)

Theorem 6.2: Let 3(z) and G () be in the class Fpx(9, ¥, 3, 6, 1n). Then the weighted mean of J(z) and G (z)
is also in the class Fp (9, 7,3, 6,1).

Proof: According to the definition of the weighted mean, we have
1 o 1
D@ =51 - D3@ + A +G@] =2~ ) S[(1=Day+ A+ Dbalz" (62)
n=2

Since 3(z) and g(z) are in the class Fx(9, 7,3, 8, 1), by Theorem 2.1, we have

Z (mR)" e, ™ [(m— 1)(9n + ¥) + n(méd + 1 — y)]la, < n(63+ 1 —p)[m — 1],!

n=2

(6.3)
and

Z (mR)™ ;™ [(m — 1) (pn + ) + n(m&X + 1 — )by < (83 + 1 — p)[m — 1],

(6.4)
Thus,
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[oe]

(]I]IHN)“ 1 mN
Z [(m—Den+p) +nméd+1-p)]————

1
20— 0a, 501+ Ob| <n @ +1-7)

~ [m— ]%!
(6.5)
~ © s (my)P—1e mX
—Z (1= D 1) + o+ 1= Pl (50 - 0a) 66)
( N)]m 1,-my
# 2 (= D0m+ ) +nm+ 1Pl Tt (504 06

n=2

1 1
=511 =@ +1-P) +511+ D@ +1-p) =@ +1-p) (67
This shows that D;(z) € Fux(9, 7,3, 6,1).

Theorem 6.3: Let 3,(2), 3,(2), ..., 3k (z), defined by

3.(2) = 7— Z ne7" (Gne = 0,7=1,2,..,1,m = 2) 6.7)

be members of the class Fpx (9, 7, 3, 6, ). Then the arithmetic mean of J3,(z), where t = 1,2, ..., k, defined by
1 K
M@= %@ (68)
=1

is also in the class Fpe(9, 7, 3,6,1).
Proof: By the definitions of 3,(z) and h(z), we have:

h(z) = %i (z - i aml,fz““) =3z - i (%ZK: nn,‘r) z" (6.9)

=1 m=2 n=2

Q

Since 3,(z) € Fux(9,7,3,6,1) for every T = 1,2, ..., k, by Theorem 2.1, we have:
( N)]I]l 1,-my 1 K
Z [(m— 1)(om + ) + 1083 +1 - p)] —,(;Z a) (6.10)

n=2 [ 1]%. 7=1
1 % Q)11 ~my
< E; (; [(m — D(em +p) + n(m&3 + 1 — )] %am> (6.11)

K
1
SEZn(61+1—y) (@ +1-7)

=1

The proof is complete.
7. Hadamard Product

In the following theorem, we obtain the convolution result for functions belonging to the class Fpx (9, ¥, 3, 8, 1).
Theorem 7.1: LetJ, G € Frx(9,7,3,8,n).ThenJ + G € me(g,y,l é,1n) for

3(2) =z— Z anz", G(z) =z — Z bnz" (7.1)
and .
S+9@ =23- ) azbaz’ (7.2)
where ”
£ < (n*(m = 1)(83+ 1 - p)[m — 1],! (om + 7))

(m)"~te, " [(m — 1)(em + ¥) + n(m83 + 1 — p)]> — (n?(63 + 1 —p)(mSX + 1 — p)[m — 1] 1)’

Proof: Since 3(z) € Fmx(9, 7,3, 8,11, we have
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o (mx)n—legmx[(m —1D(on + ) + n(méi + 1 — p)]
mz=2 n@éi+1—-y)n-1],! an <1 (7.3)

and similarly for G € Fpx(9, 7,3, 6,1),
> (mR)™ e ™ [(m — 1)(om + ) + n(mé + 1 —
Z( )" g™ [(m — 1)(em +7) +n( nl, _, 74y
= n@é+1-y)[m-1],!

We need to find the smallest ¢ such that
i mX)"Lez™ [(m = D(em + ) + {3 + 1 = )]
) 6(51+1—y)[1m—1]%!

Using the Cauchy-Schwarz inequality, we have

[oe]

(mR)" e, ™ [(m — 1)(em + ¥) + 7(m) + 1 — )]
Z né3+1-y)[m-1],!

apb, <1 (7.5)

apbp, <1 (7.6)
n=2
Thus, it is sufficient to show that
C (mX)™ ez ™ [(m — 1)(om + ) + {m& + 1 - p)]
MZ; §@r+1—p)[m—1],!

ambn

o (mN)M—le;mx[(n —Dlem+p) + n(mé> + 1 — )]
sz:; N3 +1—p)[m—1],! vanby (7.7)

Rewriting this, we get

Janb, < [(m—Dn+y) +nméd+1-yp)|¢

m-Den+p+E@m+i-ph

From (7.6), we know
n@é3+1-y)[m-1],!
Vnbn = e @ - Den+ ) F 1@+ 1-p]
Therefore, it suffices to show that
N3+ 1—-y)[m—1],!

(mR)~te;™ [(m — 1)(em + ) + n(m83 + 1 — )]

m-Dien+y) +nmdd+1 -yl (7.10)

T m-DEn+y)+imdr+1-y)ln
Simplifying this, we obtain

< (72(m - (@ + 1 - P)[n - 1],! (om + 7))

(my"te,™[(m - D(en+ ) + 1+ 1 - )2 - (G + 1 - p)(mér + 1 - y)[n — 1],!)

8. Conclusion

This paper analyzed the B« operator, which is derived from the Neutrosophic g-Poisson distribution series,
within the context of geometric function theory. The analysis uncovered key properties such as coefficient bounds,
growth and distortion limits, and the radii of convexity and star likeness, providing deeper insights into the function
classes associated with this operator. Furthermore, the research examined the weighted and arithmetic means of
functions under the operator and explored its closure properties in the context of the Hadamard product,
demonstrating its adaptability and potential for further applications. These results contribute to the development
of mathematical frameworks in geometric function theory and its practical uses.
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