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Abstract

In this paper, we continue the study W;-fuzzy implication algebras which are subalgebras of fuzzy implication
algebras. Properties and axiomatic systems for W-fuzzy implication algebras are presented, then a few new
results on Wy-fuzzy implication algebras have been added. We showed that there are relations between Wy-
fuzzy implication algebras and some of other fuzzy logical algebras such as Fl-algebras, RFI-algebras, CFI-
algebras, HFI-algebras. In particular, the relations between W;-fuzzy implication algebras and L-algebras
are investigated, and we prove that every W -fuzzy implication algebras is a proper subclass of L-algebras.
Finally, we introduce the notions of GW-FI algebras, whose some properties of it are investigated. The
relations between distributive GW-FI-algebras, Hilbert algebras, B E-algebras and W-eo algebras have been
obtained.

Keywords: Fuzzy implication algebra; W;-Fuzzy implication algebras; L-algebra; GW -fuzzy implication
algebras

1 Introduction

In the past years, fuzzy algebras and their axiomatization have become important topics in theoretical research
and in the applications of fuzzy logic. The implication connective plays a crucial role in fuzzy logic and rea-
soning [1]. Wu introduced a class of fuzzy implication algebras, FI-algebras for short, in 1990 [2]. Recently,
some authors studied fuzzy implications from different perspectives [3]. Naturally, it is meaningful to inves-
tigating the common properties of some important fuzzy implications used in fuzzy logic. Various interesting
properties of Fl-algebras [4,5], regular Fl-algebras [1,6], W;- Fl-algebras [7], and other kinds of FI-algebras
[8] were reported and some concepts of filter, ideal and fuzzy filter of FI-algebras were proposed [2,3,9]. Re-
lationships among FI-algebra and BCK-algebra [10,11], MV-algebras [12], Rough algebras [13], BL-algebras
were partly investigated, and FI-algebras were axiomatized [14,15].

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rump (2008)
[16]. Many examples shown that L-algebras are very useful. Yang and Rump (2012)[17], characterized
pseudo-MV-algebras and Bosbachs non-commutative bricks as L-algebras. Wu and Yang proved that ortho-
modular lattices form a special class of L-algebras in different ways (2020) [18]. It was shown that every
lattice-ordered effect algebra has an underlying L-algebra structure in Wu et al. (2019) [19]. Basic algebras
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and L-algebras, State L-algebras and derivations of L-algebras, L-algebras in logic, algebra, geometry, and
topology, Prime L-algebras and right-angled Artin groups were systematically discussed [20-24].

The paper is organized as follows: preliminary notions and results are introduced in Section 2. Main prop-
erties of W -FI algebras are included in Section 3. In Section 4, relationships between W -FI algebras and
several classes of important logical algebras are discussed. In Sect.5, we introduce a new algebraic structures

known as generalized W, -fuzzy implication algebras, and we construct some examples to show the existence
of the structures.

2 Preliminary notions of 11/, -FI algebras

In this part, we firstly review some relevant concepts and definitions.

Definition 2.1 ([2]) Let X be a set with the algebraic constant 0 € X, and — be a binary operation on X,
where 0 — 0 = 1. A (2,0)-type algebra (X, —, 0) is called a fuzzy implication algebra, shortly, FI-algebra, if
the following five conditions hold for all x,y, z € X:

(I)x—(y—2)=y— (v —2)

L)z —y) = ((y—>2) > (@ —2) =1

(I3)x > x=1;

(e —y=y—a=1l=c=y

(Is)0 >z = 1.

Examplel. Let X = {0, a,b, 1} be a finite set of distinct elements, and 0 < a < b < 1. We define

S s R
e

— o o]
ocoe o
ISERSEN .

It is easy to check that (X, —, 0) is an FI- algebra.
Definition 2.2 ([2]) Let X be a set with the algebraic constant 0 € X , and — be a binary operation on
X, where 1 =0 — 0. A (2,0)-type algebra (X, —,0) is called an Heyting fuzzy implication algebra, shortly,
HFI-algebra, if the following five conditions hold for all z,y, z € X:
(HF )z —> (y > xz) = 1;
(HFL)(z — (y = 2) = ((z > y) = (x> 2)) = 1;
(HF)l s z=1=z=1;
(HF))r »y=y—zc=1=z=y;
(HFI5)0 » z = 1.
On an Fl-algebra (X, —, 0), one can define a binary relation < and operators ', T', S as follows.
r<y<=zc—-y=1zyeX; €))
T =1—0,1€X; 2)
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T(z,y) = (z—y) zyeX. 3)
S(w,y) =2 -y, z,y€ X, ©)
Usually, we also say that X is an Fl-algebra for convenience.

Obviously, the relation ”<” is a partial ordering on X, i.e., the relation is reflexive, antisymmetric and
transitive(see [2]). In fuzzy logic, the property (1) is called the ordering property.

The operator”l” defined in the above definition is a negation on X, i.e., the operator is order-inverting and
satisfies 0 = 1,and 1 = 0. ”<” and ”"”are called the partial ordering and the negation induced by the FI-
algebra X, respectively.

Definition 2.3 ([2]) Let X be an Fl-algebra.

(1) X is a regular Fl-algebra, or an RFI-algebra, if 2 = xz, forall x € X.

(i1) X is commutative, or a CFI-algebra, if the binary operation 7" defined by (3) is commutative, or the
following condition (Ig) holds for all x,y € x:

o)z = y) »y=(y > x) >

For the related background of W, - Fuzzy implication algebra, we refer to Deng and Li(1996). A W -
Fuzzy implication algebra is an algebra of type(2,0). The notion was first formulated in 1996 by Deng and
some properties were obtained[7]. This notion was originated from the motivation based on fuzzy implication
algebra introduced by Wu [2].

Definition 2.4 ([7]) A (2,0)-type algebra (X, —,0) is a Wy-Fuzzy implication algebra, shortly, W-FI
algebra, if the following conditions hold for all z,y, z € X:

W)z —(y = 2) =y — (v - 2);
W)z —y) > z2=(z—-y) -
W3)x —z =1,

Wiz >y=y—z=1=z=y
(W5)0 > 2 =1, where 1 = 0 — 0.

Example 2. Consider X = [0, 1], for every x,y € X, defined z — y = 1, then (X, —,0) is a Wy-FI
algebra.

Example 3. Let X = {0, a, 1} be a finite set of distinct elements. We define

—~ o o
o O =IO
Q = |
e

Then (X, —,0) is a FI- algebra, but not W,-FI algebras. In fact, (1 - a) - 0 =a — 0 = 0, but
(0 >a) > 1=1—1=1,s0 (Ws) does not hold.

In Sect.4, we will prove that any W, -FI algebra is an FI-algebra, but the inverse is not true. Every W;-FI
algebra is an RFI- algebra, we show that an RFI- algebra is W-FI algebra is not correct in general.
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3 Main properties of 1V; -FI algebra

Given a W, -FI algebra (X, —, 1) , a binary relation ” < ” is defined by
r<yesr—y=1,

Then ” < ” is a partial order which is called the natural order. Relative to the natural order on X, 1 is the
greatest element.

In fact, by Definition 2.4 , (W3)x — = = 1 we get z < z, i.e., reflexive hold, using (W), we have
antisymmetric are satisfied,i.e, z < y,y <z =z =y. Next,tbyr -z =2 - (1l » 2) =2z - ((y —
z) > z)=xz— ((z > 2) > y)=2— (1 > y) =2 — y = 1. Hence, transitive hold. So, < is a partial
order on X.

Proposition 3.1 If (X, —,0) is a W, -FI algebra and z, y, z € X, then:
We)x > 1=1,1 >z =z,

Wiz »y=1lLy—-oz=1=z—>2=1,

We)(x—=y) = (y—=2) > (z—2) =1,

Wo)(y = 2) = ((z = y) = (z = 2)) = 1,

W)@ = (y = 2)) = (@ = y) = (2 = 2)) = =.

Proof. (Ws) Indeedz - 1 =2 — (0 > ) =0 — (x — z) = 0 — 1 = 1. Thus, we have verified that
z—1=1

Besides, (1 - z) bz =(z o 2z)>l=1-1l=lLz>(1-2z)=1>(z—>2)=1—>1=1.
Thatis1 — z = z.

(Wr)lfx »y=1,y >z=1holds,thenz - 2=1—-> (z - 2)=(x > y) — (x > 2) = ((vr —
2)-y) bz=(@Wy—2—-z)pz=1->2)>zx=2—>zc=1Thus,z > z=1.

(Ws) Indeed (z —y) = ((y > 2) > (=~ 2)) = (.~ y) = (x> 2) = 2) 2 y) = (x> y) —
(z=2)—2r)my=@-y->((1-2)>y =y >y =1

Hence, forall z,y,z€ X, (z > y) > ((y > 2) = (x —> 2)) = 1.

(Wo) Wehave (y — 2) > ((z —y) > (= 2) = (z >y > (y > 2) > (2 —>2) = (. —>y) -

(@=2)=>2) >y =@->y) > (-2 —a)>y) =@y > (1o2) >y =(—>y) —
(—y) =1

(Wio) Letz,y, z € X. Applying (W7) and (W3), we have

(z—=>@y—2)>(z—-y>(@-2)=@Y—>(@—-2)>(z—>y > (@—>2)=(@—>y —
(y=(—=2)—(@—=2)=@—-y>(z—-2)>(r—-2) >y =@->y>1->y =@@—
y)—y=y—y »z=1->z=u.

Proposition 3.2 Let X be an W, -FI algebra, for all z, y, z, we have
Wnly<z-yz—oy<(z-z) > (2> y).

Wp)rt<y=z-oz<z—>yy—z<z— 2.

’

(Wiz)z" = z;(z" — x) = 0.

’

(W14)Im —
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(Wis)z' —y =y —
(Wig)x' »y=y —
(Wir)(z > y) ==

’

(Wis)(y - z) >y <z

’

W)@ —»y) maz =2 — (@ —y) =
(Wao)(Commutativity)T(z, y)
(War)(Associativity)T(T(z, 1), 2)
(Was)(Monotonicity)z
(Was) (Identity)T(x, 1) — 2, S(z,0) —
=T(z',y), T(x,y) =

x') = 1,T(x,:c') = 0;

(Wa4)(Duality)S(x,y)
(Was)S(x,
Wag)x — (y — 2) = T(z,y) = 2

(War)T((z > 2), (2 = y)) = 2 > T(,y);

(Wag)z' =2 >0=0=z = 1.

Proof. (W11) Applying (W1),wehavey —» (r > y) =2z > (y—>y) =2 —>1=1.Soy <

By (z—y) > ((z—2) = (z2—>y) = (2
y) = y) —
x) = 1, we have that for all z,y,z € X, (z — y) <

(W12) Assume that z <
(y—>z)—

y. Then (z — z) —

Similarly, we have (y — z) —

= T(y,x), S(x,y)
= T(a’;,T(y7 2)), S(S(z,y), z)

<y= T(IE,Z) < T(y,z),S(x, Z)

().

=) = ((z >y —
z) = (z = 2) > (((y > y) = 2) = (ff):(

NG

(z—y)—o) =y

= S(ym);

= S(J?, S(ya Z))’

< S(y, 2);

’

xr — Y,

(=) = (= = ) = (= —
s ) (1= 2) = 2) = (5= 2) = (= —
7) = (z = ).

oy =z2-((F—2)2y=2->(y—-2)—2) =
(z—>2)=y—>2)>1=(1—>2)>y=x—y=1, whichimplies that z > z < z — y.

(x—-2)=(r—>2)=>2)—2y=(—-2)—a)>y=>1-2)—

y=z—y=1.
Wis)z' =(x—>0)—>0=0—-0)>z=1—>z=2z.
(" —2) =(—2)=1=1-0=0.
(Wia)z" = (¢ —0) > 0) > 0= (0—0) -

(W15)le - y, = (117 - O) -
x) =y —> x.

(z—0)=1— (¢ —0) =

W—=0=y—->((2—-0—-0=y—>(0—-0—-2)=y—(1-

(Wlﬁ)x/—>y=(m—>0)—>y=(y—>0)—>x=y/—>x.

(W17)(xﬁy)/Z(CCHy)H():(OHy)Hx:lH;E:z.

’

Wig)((y > 2) > y) -2 =@ -y)—>(y—>2)=(@U—>a) -y >z =1 So,

(y—a)—y <w.

’

(W)@’ =) mz=(y—2)—ma=(@@—-2)>y=1>y=yu—(z —>y) ) —’(y—>
2) =(y—x)>x=(r—>z)—>y=1—y=y Therefore, (z -y ) —>z=2 — (z —>y) =
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’

Similarly, we have ((z — y) = @) = (&' > y) > 2) = (z > 0) > y) > 2) = ((y > 0) —
r) =) =(@—2)>@y—0) =(F—-0)—-0=y

N N

(Wa)T(z,y) =(x >y ) =(y—>x) =T(y,x). Similarly, we have S(z,y) = S(y, x).

)= (=) =) = (@ —y) >0 — =) =((

(W) T(T(2y),2) = T((@ — y) 2 - / (
N =@ Goy) =z —>0) =@y

y)—0) = (z-0) =(z—>(@—y
(2= 0) =T(2,T(y, 2))-

Similarly, we have S(S(z,y), z) = S(x, S(y, 2)).

/

(W) Duetor <y < x -y =1 thenforall z,y,z € X, itis (z — 2 - (y—2) = (& -
) 0) = ((y = 2) = 0) = (y = 2) — (8 — ) = 5 —y = 1. Hence, T(z,2) < T(y,2).
S(x,Z) < S(y, z). Similarly, we have S(z, 2) < S(y, 2).

(Was)T(z,1)=(z >1) =(x>1)>0=(0—>1)>2=1—>z=21.

S(z,0)=2' - 0=(2—>0)>0=(0—0)>z=1—>2z=uz

’ NG ’

(Waa)(T(z' ) = (2 —>y") =2" >y =S(zy).

"

(S y) =@" -y) =@—y) =T(zy).

AN

(Was)S(z,2) =2 -2 =1;T(z,2) = (x > ")

’

:(Jj—)l‘)l::l =1—-0=0.

(Wae)T(a,y) = 2= (@ = 2) 2= (x> y) = 0) > 2= (&= (y—0) >0 > z= (s -
0) > (@~ (y—0) = — ((z > 0) > (y > 0) =2 — (y — 2).

Wor)T((z = 2),(z > y) = ((z = 2),(z > y)) =((z—>2) > ((z—>y -0)—->0=2—>uz
andz > T(z,y)=2— (x—>y) =2—> (x> (y—0) >0=2— =z

(Wag) By assume thatz’ =2 - 0=0=1=0—-0=(z ->0) >0=(0—-0) >z =1—z =z,
we getz = 1.

Proposition 3.3 Let X be a W, -FI algebra and z,y, z € X, then (z —> y) — z = (z — y) — z implies
x—o (y—o2)=y— (z— 2).

Proof. By (Ws),wehavex — (y > z2)=(1—>z) > (y—>2)=(y—>2) - z) > 1=(z » 2) —
Yy ->1=1-y) > (x—>z2)=y— (x> z2).Hence,z — (y = 2) =y — (z — 2).

Theorem 3.4 A (2,0)-type algebra (X, —,0) is a Wy-fuzzy implication algebra if and only if it satisfies
that

W1 (x—>y)—>z2=(2—>y) >

W2H1 -z =a;

W3z -z =1;

WiHIfz >y=y—>z=1,thenz =y;
(W5)0 - 2 =1, where 1 =0 — 0.

Proof. Immediate from Proposition 3.3 and Definition 2.3.
By (Wl/) of Theorem 3.4, for distinct z,y € X, we obtain
Wao)((z > y) »y) »y=z—>y.
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Theorem 3.5 Let(X, —, 0) be a W;-fuzzy implication algebras with negation, we define the partial addi-
tion )
rTH+y:=y —x. )

Then (X, +,0) is an Abelian monoid.
Proof. It is easy to check that 0 is partial addition unit.,i.e 0 + z =z + 0 = x.
Next, we will show thatz + (y + 2) = (z +y) + 2,z + y =y + =.

In fact, by (5), wehave (z +y) + 2 =2 — (x+y) = (2 > 0) > ((y = 0) > z) = (z > 0) > (z —
)=y =@@—=0—->E-0-y=@-0->(F+2)=((y+2)—>0—z=c+(y+2)

Similarly, it can be proved that  + y = y + x, for any z,y € X. Therefore, (X, +,0) is an Abelian
monoid.

4 Relation between 1V -FI algebras and other logical algebras

4.1 Relation with FI-algebras

In this subsection, we establish the connections between: Proposition 4.1 Every W, -FI algebra is an FI -
algebra, but the inverse is not true.

Proof. From the Definition 2.3 and (3) of Proposition 3.1, it is easy to see that any W, -FI algebra must
be an FI - algebra. By example 3, W, -FI algebra may be an proper subalgebra of Fl-algebra, but FI algebra
must not be W -FI algebra.

Example 4. Let X = {0, a, b, 1} be a finite set of distinct elements. We define

O oo
QL Q = MR
S R
e e

0
a
b
1

Then, (X, —, 1) is an FI-algebra which is not W,-FI algebra, because (a - b) > b=b—>b=1+# (b —
b) >a=1->a=a.

4.2 Relation with RFI-algebras

Proposition 4.2 Every W;-FI algebra is an RFI- algebra.

Proof. By Proposition 4.1 and Definition 2.3, we have ¥V € X,z = (z — 0) - 0 = (0 - 0) - z =
1 — x = z. Therefore (X, —, 0) is an RFI- algebra.

In the following example, we show that converse of Proposition 4.3 is not correct in general.

Example 5. Let X = [0, 1], we define z — y = min(1,1 — x + y). It is easy to verify that (X, —,0) is
an RFI-algebra. But the converse of above Proposition is not true.

In fact, we put z = 0.1,y = 0.2,z = 0.3, because (0.1 — 0.2) — 0.3 = min(1,1 —0.1+0.2) - 0.3 =
1 — 0.3 = 0.3, on the other hand, (0.3 — 0.2) — 0.1 = min(1,1 —0.3+0.2) > 0.1 = 0.9 —» 0.1 =
min(1,1—0.9 +0.1) = 0.2, hence, it is not satisfies condition (W3).

We have see that Wy-FI algebra classes are a subclasses of RFI-algebras.
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4.3 Relation with CFI-algebras

Proposition 4.3 W, -FI algebra must not be CFI- algebra.
Proof. It is easy to prove that if = # y, then the condition (/) does not hold, i.e., suppose

(x—y)—y=(@Hy—2) >z

then clearly ; ( ;
(y—y) —z=(@—>2) -y

Thus, we have x = y, which contradicts to assertion.

4.4 Relation with HFI-algebras

Proposition 4.4 ([7]) The relation between W, -FI algebra and HFI- algebra is as following :
(D) If (X, —,0) is a Wy-FI algebra such that, for all z,y, z € X,
T (y—z2)=(x-y —(z—2) (©)

holds, then (X, —,0) is a HFI-algebra.

(Q)If (X, —,0) is an HFI-algebra such that, for all z,y, z € X,

(@)= 2=(zy) =2

holds, then (X, —,0) is a W, -FI algebra.

Proof. (1) Assume that (X, —,0) is a W, -FI algebra, it is easy to verify that conditions (H F'I4), (H FI5)

of HFI-algebra hold. By (W;)x — (y —> 2) =y — (r — 2),and put 2 = x, wehave x — (y > z) =y —
1=1.So (HFI) holds for all z,y € X.

Next,byz — (y > 2) = (z > y) » (x > 2),wehave (x > (y > 2)) > ((x > y) > (x = 2)) = 1,
which implies (H F'I5) holds forall z,y,z€ X. Byl »x =2 and1 - 2 =1 = z = 1, so (HFI3) holds
for all z € X. Hence, (X, —,0) is a HFI-algebra.

(2) Tt is easy to prove that if an HFI-algebra (X, —, 0) satisfies the condition (x — y) — 2z = (z > y) —
x, then (X, —,0) is an W, -FI algebra.

Corollary 4.5 Every self distributive W, -FI algebra is an HFI-algebra.

Proof. By Proposition 4.4 (1), the proof is clear.

4.5 Relation with BCK-algebras

In 1966, Imai and Iseki [28] introduced two classes of abstract algebras, BCK-algebras. It is well known that
the class of MV-algebras is a proper subclass of the class of BCK-algebras. Therefore, both BCK-algebras and
MV-algebras are important for the study of fuzzy logic.

In this subsection, we investigate the relation between W -FI-algebras and BCK-algebras.

Definition 4.1 [28] An algebraic structure (A, —, 1) of type (2, 0) is called a BC K -algebra, if for any
x,y, z € A, the following conditions hold:

BCKy)(x —y) = (y—>2) > (z—2) =1,
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(BCK3)1 - z =z,

(BCK3)x —>1=1,

(L3)ifr > y=y—>x=1,thenz =y.

Theorem 4.6 Every W ;-Fl-algebras is a BC' K -algebras.

Proof. By Definition 2.4 and (W), (W3) in Proposition 3.1, the proof is clear.

By the following example we show that every BC K -algebra is not Wy-FI-algebra, in general.

Example 6. Let X = {a,b, ¢, 1} be a finite set of distinct elements. We define

N
a
b
c
1

ST
R Q|
o =2 Q|0
e ) R

Then (X, —, 1) is a BC K -algebra, and it is not a W,-FI-algebra, since W5 is not satisfied

b—-c)Da=a—-a=1#a=a—b=(a—c)—>b

4.6 Relation with L-algebras

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rump [16]. It
turns out that the concept of L-algebra is fundamental in the sense that various algebraic structures, even
with several operations like Heyting algebras, (one-side) hoops, (pseudo) MV-algebras or 1-group cones, are
definable as L-algebra[17-24].

First, we recall some definitions and properties about L-algebras.

Definition 4.2([16]) An L-algebras is an algebra (L, —, 1) of type (2,0) satisfying for all z,y, z € L,

(L) —>z=2x—>1=1,1>z=ux

(Lo)(z = y) = (z—2)=(y—>2) = (y = 2);

(L:;)z—»y:yax:lﬁx:y_

From the above definition of Rump ([16]), we know that Hilbert algebras are equivalent to implicative
BCK-algebras, and they are special L-algebras. L-subalgebra {y — x|y, € L} of an L-algebra is an MV-
algebra. Next, we give characterizations of L-algebras and discuss relations between Wy-FI algebra and L-
algebras.

Theorem 4.7 ([16])Let (X, —, 1) be an L-algebra. The following hold for all z,y, z € X:

DHr<y=z—-x<2z-—y

(2) < is a partial order on X;

(B)z=yifandonlyifz —» z =y — 2z, forallz,y,z € X;

4)x,y < zsuchthat z - x = z — y, then x = v;
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G ((z—y)—y) my=2—y;
O (z—y) >y —z)—>(z>y) -y —2)=2— 2
(7) If X satisfies condition (z — (y — 2)) — (y — (x — z)) = 1, then

r—(y—z2)=y—(z—2).

Theorem 4.8 Any 1W;-FI algebra is an L-algebra, but the inverse is not true.

Proof. Let (X, —,0) is a Wy-FI algebra, any x,y, z € X, by equations (W;), (W3) and (Ws), respec-
tively, it is easy to see that

oy o@@o2)=z->(z-oy) —2)=2—->(z—-y) —2)=EF—-y > @2 =(2—>
y)—1=1,

y—z)>@y—-2=y—((y—2)—2)=y—->(z—2) >y =r—-2) - y—-y =(=—
x)—>1=1

Hence, (z — y) — (x — z) = (y = x) — (y — 2). Thus (L2) holds in X.
From definition 2.3, we see that (L; and (L3) hold in X. Therefore, (X, —,0) be a L-algebra.

Example 7. Let X = {0,a,b,c,d, 1} be a set and operation — be defined as follows:

— a0 oo o
OR T O Qo
[wa e e e R
QU Q= e,
el )

Q "o~ R
o QL+~ O Q Hlo

Then (X, —, 1) is an L-algebra which is not a Wy-FI algebra, since (b > ¢) > d=1+#(d > ¢) > b=
d — b = b. Therefore, the class of W,-FI algebras is a proper subclass of L-algebras.

Theorem 4.9 Let (X, —, 1) is an L-algebra satisfying the condition
-y =z=0(E—-y -z

for z,y,z € X, then (X, —, 1) is a W,-FI algebra.

Proof. By Definition 2.4 and Theorem 4.3 wehavex — (y > 2) = (1 > z) > (y = 2) = ((y — 2) —
1) >l=(z—-2)>y—l=01-y) > (@—->2)=y—>(r—>2).5z->(@FH—>2)=y— (-2
. Thus, L-algebra (X, —, 1) is a Wy-FI algebra.

Definition 4.3 ([21]) Let (X, —, 1) be an L-algebra. The following hold for all 2,y € X:

(1) If L-algebra (X, —, 1) satisfies
x—(y—ax)=1,
then it is called a KL-algebra.

(2) If L-algebra (X, —, 1) satisfies

—>W—2)—>W—o(—>2)=1
then it is called a CL-algebra.
Proposition 4.10 ([21]) Any CL-algebra is a KL.-algebra.
Theorem 4.11 If (X, —, 0) is a W4-FI algebra, then (X, —, 0) is a CL-algebra and it is also a KL-algebra.
Proof. By Theorem 4.7, any W;-FI algebra (X, —,0) is an L-algebra, using (W7)and(W3), we get
(- (y—2)—>Hy—>(@—>2)=(Hy—(—>2)—> (- (@—>2z)=1 Hence we get (X, —,0) isa
CL-algebra. By Proposition 4.8, we get (X, —,0) is a KL-algebra.
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S Generalized 1V, -FI algebras

In this Sect., the concept of GW-Fl-algebra is introduced, and some properties of it are investigated. We dis-
cuss on a distributive GWy-FI-algebra.The relationship between distributive GW-FI-algebra and Hilbert al-
gebra is considered, and we prove that every distributive GW,-FI-algebra is a Hilbert algebra, but the converse
may not be true, with an example being given to illustrate it. Moreover, we prove that every GW -Fl-algebra
is a BE-algebras.

5.1 Notes of Generalized 1V, -FI algebras

The condition (WW3) of Definition 2.4 is a strong condition, in this Sect., we abandon the condition W5, redefine
generalized W -fuzzy implication algebras which is a generalization of Wy-FI-algebra. In order to show the
existence of the structures, we presented some examples. We then explore some properties of these structures.
We start with the following definition.

Definition 5.1 A (2,0)-type algebra (X, —,0) is said to be a generalized W;-Fuzzy implication algebra,
shortly, GW,-FI algebra, if the following conditions hold for all z,y, z € X:

(G -2 =1;

(GWo)l - ¢ = x;

(GWs)z — (y » 2) =y — (z — 2);
(GWy)ifx >y=y—x=1,thenx = y;
(GW5)0 > =1, where 1 =0 — 0.

Let us give two examples.

Example 8. Let X = {0,a,b, ¢, 1} be a set and operation — be defined as follows:

o o o
O~ O~ O
Q= Q = HQ
S =R~
QA == o o
e e B

Then, (X, —,0) is a GW,-Fl-algebra.

Example 9. Let X = {0,a,b, c,d, 1} be a set and operation — be defined as follows:

— a0 oo ol
coocooro
(el el R
S Y
i

Q@ & & & e
O 0O O O O
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Then, (X, —,0) is a GW,-FI-algebra.

Let us state and prove some properties.

Proposition 5.1 Let(X, —, 0) be a generalized GW-FI algebra and z, y € X. Then
G-Hr—-1=1;

5-2)x— (y —>x)=1.

Proof. Forany x € X, wehavex > 1 =2 — (0 > z) =0 > (zx > z) = 0 —> 1 = 1. Hence,
r—1=1

royoz)=y—-(z—>z)=y—>1=1.S0,2— (y > x)=1.

Definition 5.2 ([25,26])A BE-algebra is a non-empty set X with a constant 1 and a binary operation —
satisfying the following axioms:

(BE )z —> 2z =1,

(BEy)x — 1 =1,

(BE3)l » = =z,

(BEy)x — (y > 2z) =y — (z > z),forall z,y,z € X.

Proposition 5.2 Every GW-FI algebra (X, —, 0) is a BE-algebra, but the converse may not be true.
Proof. By Definition 5.1, Definition 5.2 and Proposition 5.1, the proof is completed.

Example 10. Let X = {0, a, b, 1} be a set and operation — be defined as follows:

— o ol
cocorlo
2 2 ~ale
SN = OO
[

It is easy to see that (X, —,0) is a BE-algebra, but it is not GW,-FI algebra, since 0 — a = a # 1.

Definition 5.3 A GWy-FI algebra (X, —, 1) is said to be self-distributive if z — (y — 2) = (z > y) —
(x — z),forall z,y,z € X.

Definition 5.4 ([27]) A Hilbert algebra is an algebra (A, —, 1) of type (2,0) such that the following axioms
are fulfilled for every z,y, z € A:

(Hi)z—(y—az) =1L

(Hy) (z = (y—2) > (z—y) = (@—2)=1

(H3)fx > y=y—>a=1thenz =y.

From Definition 5.1, 5.3, and 5.4, we have the following results.

Proposition 5.3 Every self-distributive GW,-FI algebra (X, —, 1) is a Hilbert algebra. In this case, (X, <)

is a poset by defining an order relation < such that x < y iff x — y = 1 (called the natural order on X), with
respect to this order, 1 is the greatest element of X.
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Proof. (1) By using (5-2) of Proposition 5.1, we get that (H;) holds. Using the distributive law again, we
obtain that (H3) holds. (GW,) coincides with (H3). The proof is completed.

(2) By (GW1),z — = = 1, we get © < x. By (GW,), we obtain z < y,y < = = = y. Now, let
x,y, z € X, by using self-distributive law again, from z < y, y < z, we get

roz=1l-o@-o2)=@->y>@—o2)=2->(y—z)=x—>1=1.
Thus, < z. Hence, (X, <) is a partial order set.

Remark. In Proposition 5.3, the condition self-distributive is necessary. The following example is given
to illustrate it.

Example 11. If we consider Example 8, then we have
b—->(c—oa)>((boc)>b—oa)=b->1)>(1->a)=1->a=a#1.

Hence, in Example 8, self-distributive law is not satisfied. So (X, —, 1) is a GW-FI algebra, but it is not
a Hilbert algebra.

5.2 Generalized 1V, -FI algebras and W-eo algebra

Definition 5.5 ([30]) Let L be a non-empty set,—: L x L — L a binary operation and T a fixed element of L.
The triple (L; —; T) is a weak extended-order algebra, shortly w-eo algebra, if for all a, b, ¢ € L, the following
conditions are satisfied:

(O1)a — T = T (upper bound condition);

(O2)a — a = T(reflexivity condition);

(O3)a > b=b—a=T = a=>b (antisymmetry condition);

(Og)a >b=Tandb—c=T = a— c= T (weak transitivity condition).

Proposition 5.4 Every self-distributive GW,-FI algebra (X, —, 0) is a W-eo algebra.

Proof. By using (5-1) of Proposition 5.1, we get (O;) hold. By (GW7) and (GW,), we get (O3), and(Os3)
hold, respectively. We take 1 = T,bya > b=1landb - c=1,wehavea > c=1— (a > ¢) = (a —

b) > (a—>¢)=a— (b—>c¢)=a—1=1,s0a — ¢ = 1. Hence, (O4) holds, i.e., (X,—,0) is a W-eo
algebra.

6 Conclusion

The aim of this paper is to study the relations between Wjy-Fl-algebras and other logical algebras such as
FlI-algebras, RFI-algebras, CFI-algebras, BCK-algebras, Hilbert-algebras and L-algebras, etc. The concept of
GW4-Fl-algebra is introduced, and some properties of it are investigated. For the future research, we will
investigate new structures on G'W -algebras.
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