

Relations between W_d -fuzzy implication algebras and other logical algebras

Fang-an Deng^{1,*}, Yichuan Yang², Zhao Yang¹

¹School of Mathematics and Computer Science, Shaanxi University of Technology, 723001 Hanzhong, China ²School of Mathematical Sciences, Beihang University, Shahe Campus, 102206 Beijing, China

Emails: dengfangans@126.com; ycyang@buaa.edu.cn;yangzhao@snut.edu.cn

Abstract

In this paper, we continue the study W_d -fuzzy implication algebras which are subalgebras of fuzzy implication algebras. Properties and axiomatic systems for W_d -fuzzy implication algebras are presented, then a few new results on W_d -fuzzy implication algebras have been added. We showed that there are relations between W_d -fuzzy implication algebras and some of other fuzzy logical algebras such as FI-algebras, RFI-algebras, CFI-algebras, HFI-algebras. In particular, the relations between W_d -fuzzy implication algebras and L-algebras are investigated, and we prove that every W_d -fuzzy implication algebras is a proper subclass of L-algebras. Finally, we introduce the notions of GW_d -FI algebras, whose some properties of it are investigated. The relations between distributive GW_d -FI-algebras, Hilbert algebras, BE-algebras and W-eo algebras have been obtained.

Keywords: Fuzzy implication algebra; W_d -Fuzzy implication algebras; L-algebra; GW_d -fuzzy implication algebras

1 Introduction

In the past years, fuzzy algebras and their axiomatization have become important topics in theoretical research and in the applications of fuzzy logic. The implication connective plays a crucial role in fuzzy logic and reasoning [1]. Wu introduced a class of fuzzy implication algebras, FI-algebras for short, in 1990 [2]. Recently, some authors studied fuzzy implications from different perspectives [3]. Naturally, it is meaningful to investigating the common properties of some important fuzzy implications used in fuzzy logic. Various interesting properties of FI-algebras [4,5], regular FI-algebras [1,6], W_d - FI-algebras [7], and other kinds of FI-algebras [8] were reported and some concepts of filter, ideal and fuzzy filter of FI-algebras were proposed [2,3,9]. Relationships among FI-algebra and BCK-algebra [10,11], MV-algebras [12], Rough algebras [13], BL-algebras were partly investigated, and FI-algebras were axiomatized [14,15].

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rump (2008) [16]. Many examples shown that L-algebras are very useful. Yang and Rump (2012)[17], characterized pseudo-MV-algebras and Bosbachs non-commutative bricks as L-algebras. Wu and Yang proved that orthomodular lattices form a special class of L-algebras in different ways (2020) [18]. It was shown that every lattice-ordered effect algebra has an underlying L-algebra structure in Wu et al. (2019) [19]. Basic algebras

and L-algebras, State L-algebras and derivations of L-algebras, L-algebras in logic, algebra, geometry, and topology, Prime L-algebras and right-angled Artin groups were systematically discussed [20-24].

The paper is organized as follows: preliminary notions and results are introduced in Section 2. Main properties of W_d -FI algebras are included in Section 3. In Section 4, relationships between W_d -FI algebras and several classes of important logical algebras are discussed. In Sect.5, we introduce a new algebraic structures known as generalized W_d -fuzzy implication algebras, and we construct some examples to show the existence of the structures.

2 Preliminary notions of W_d -FI algebras

In this part, we firstly review some relevant concepts and definitions.

Definition 2.1 ([2]) Let X be a set with the algebraic constant $0 \in X$, and \rightarrow be a binary operation on X, where $0 \rightarrow 0 = 1$. A (2,0)-type algebra $(X, \rightarrow, 0)$ is called a fuzzy implication algebra, shortly, FI-algebra, if the following five conditions hold for all $x, y, z \in X$:

$$(I_1)x \to (y \to z) = y \to (x \to z);$$

$$(I_2)(x \to y) \to ((y \to z) \to (x \to z)) = 1;$$

$$(I_3)x \to x = 1;$$

$$(I_4)x \to y = y \to x = 1 \Rightarrow x = y;$$

$$(I_5)0 \to x = 1.$$

Example 1. Let $X = \{0, a, b, 1\}$ be a finite set of distinct elements, and 0 < a < b < 1. We define

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	$a \\ 0$	a	1	1
1	0	a	b	1

It is easy to check that $(X, \rightarrow, 0)$ is an FI- algebra.

Definition 2.2 ([2]) Let X be a set with the algebraic constant $0 \in X$, and \to be a binary operation on X, where $1 = 0 \to 0$. A (2,0)-type algebra $(X, \to, 0)$ is called an Heyting fuzzy implication algebra, shortly, HFI-algebra, if the following five conditions hold for all $x, y, z \in X$:

$$(HFI_1)x \rightarrow (y \rightarrow x) = 1;$$

 $(HFI_2)(x \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = 1;$
 $(HFI_3)1 \rightarrow x = 1 \Rightarrow x = 1;$
 $(HFI_4)x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y;$
 $(HFI_5)0 \rightarrow x = 1.$

On an FI-algebra $(X, \to, 0)$, one can define a binary relation \leq and operators ', T, S as follows.

$$x \leqslant y \Longleftrightarrow x \to y = 1, x, y \in X; \tag{1}$$

$$x' = x \to 0, x \in X; \tag{2}$$

$$T(x,y) = (x \to y')', x, y \in X.$$
 (3)

$$S(x,y) = x' \to y, x, y \in X. \tag{4}$$

Usually, we also say that X is an FI-algebra for convenience.

Obviously, the relation " \leq " is a partial ordering on X, i.e., the relation is reflexive, antisymmetric and transitive(see [2]). In fuzzy logic, the property (1) is called the ordering property.

The operator" defined in the above definition is a negation on X, i.e., the operator is order-inverting and satisfies 0' = 1, and 1' = 0. " \leq " and "'" are called the partial ordering and the negation induced by the FIalgebra X, respectively.

Definition 2.3 ([2]) Let X be an FI-algebra.

- (i) X is a regular FI-algebra, or an RFI-algebra, if x'' = x, for all $x \in X$.
- (ii) X is commutative, or a CFI-algebra, if the binary operation "T" defined by (3) is commutative, or the following condition (I_6) holds for all $x, y \in x$:

$$(I_6)(x \to y) \to y = (y \to x) \to x.$$

For the related background of W_d - Fuzzy implication algebra, we refer to Deng and Li(1996). A W_d - Fuzzy implication algebra is an algebra of type(2,0). The notion was first formulated in 1996 by Deng and some properties were obtained[7]. This notion was originated from the motivation based on fuzzy implication algebra introduced by Wu [2].

Definition 2.4 ([7]) A (2,0)-type algebra $(X, \to, 0)$ is a W_d -Fuzzy implication algebra, shortly, W_d -FI algebra, if the following conditions hold for all $x, y, z \in X$:

$$(W_1)x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z);$$

$$(W_2)(x \to y) \to z = (z \to y) \to x;$$

$$(W_3)x \rightarrow x = 1;$$

$$(W_4)x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y;$$

$$(W_5)0 \to x = 1$$
, where $1 = 0 \to 0$.

Example 2. Consider X = [0,1], for every $x,y \in X$, defined $x \to y = 1$, then $(X, \to, 0)$ is a W_d -FI algebra.

Example 3. Let $X = \{0, a, 1\}$ be a finite set of distinct elements. We define

\rightarrow	0	a	1
0	1	1	1
a	0	1	1
1	0	a	1

Then $(X, \to, 0)$ is a FI- algebra, but not W_d -FI algebras. In fact, $(1 \to a) \to 0 = a \to 0 = 0$, but $(0 \to a) \to 1 = 1 \to 1 = 1$, so (W_2) does not hold.

In Sect.4, we will prove that any W_d -FI algebra is an FI-algebra, but the inverse is not true. Every W_d -FI algebra is an RFI- algebra is not correct in general.

3 Main properties of W_d -FI algebra

Given a W_d -FI algebra $(X, \rightarrow, 1)$, a binary relation " \leq " is defined by

$$x \leq y \Leftrightarrow x \to y = 1$$
,

Then " \leq " is a partial order which is called the natural order. Relative to the natural order on X, 1 is the greatest element.

In fact, by Definition 2.4 , $(W_3)x \to x = 1$ we get $x \leqslant x$, i.e., reflexive hold, using (W_4) , we have antisymmetric are satisfied,i.e., $x \leqslant y, y \leqslant x \Rightarrow x = y$. Next, by $x \to z = x \to (1 \to z) = x \to ((y \to z) \to z) = x \to ((z \to z) \to y) = x \to (1 \to y) = x \to y = 1$. Hence, transitive hold. So, \leqslant is a partial order on X.

Proposition 3.1 If $(X, \rightarrow, 0)$ is a W_d -FI algebra and $x, y, z \in X$, then:

$$(W_6)x \to 1 = 1, 1 \to x = x,$$

$$(W_7)x \rightarrow y = 1, y \rightarrow z = 1 \Rightarrow x \rightarrow z = 1,$$

$$(W_8)(x \to y) \to ((y \to z) \to (x \to z)) = 1,$$

$$(W_9)(y \to z) \to ((x \to y) \to (x \to z)) = 1,$$

$$(W_{10})(x \to (y \to z)) \to ((x \to y) \to (x \to z)) = x.$$

Proof. (W_6) Indeed $x \to 1 = x \to (0 \to x) = 0 \to (x \to x) = 0 \to 1 = 1$. Thus, we have verified that $x \to 1 = 1$.

Besides, $(1 \to x) \to x = (x \to x) \to 1 = 1 \to 1 = 1$, $x \to (1 \to x) = 1 \to (x \to x) = 1 \to 1 = 1$. That is $1 \to x = x$.

$$(W_7)$$
 If $x \to y = 1, y \to z = 1$ holds, then $x \to z = 1 \to (x \to z) = (x \to y) \to (x \to z) = ((x \to z) \to y) \to x = ((y \to z) \to x) \to x = (1 \to x) \to x = x \to x = 1$, Thus, $x \to z = 1$.

$$(W_8) \text{ Indeed } (x \to y) \to ((y \to z) \to (x \to z)) = (x \to y) \to (((x \to z) \to z) \to y)) = (x \to y) \to (((z \to z)) \to x) \to y) = (x \to y) \to ((1 \to x) \to y) = (x \to y) \to (x \to y) = 1.$$

Hence, for all $x, y, z \in X$, $(x \to y) \to ((y \to z) \to (x \to z)) = 1$.

$$(W_9) \text{ We have } (y \to z) \to ((x \to y) \to (x \to z)) = (x \to y) \to ((y \to z) \to (x \to z)) = (x \to y) \to (((x \to z) \to z) \to y) = (x \to y) \to (((z \to z) \to x) \to y) = (x \to y) \to ((1 \to x) \to y) = (x \to y) \to (x \to y) = 1.$$

 (W_{10}) Let $x, y, z \in X$. Applying (W_1) and (W_2) , we have

$$(x \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = (y \rightarrow (x \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = (x \rightarrow y) \rightarrow ((y \rightarrow (x \rightarrow z)) \rightarrow (x \rightarrow z)) = (x \rightarrow y) \rightarrow (((x \rightarrow z) \rightarrow (x \rightarrow z)) \rightarrow y) = (x \rightarrow y) \rightarrow (1 \rightarrow y) = (x \rightarrow y) \rightarrow (x \rightarrow z) \rightarrow (x$$

Proposition 3.2 Let X be an W_d -FI algebra, for all x, y, z, we have

$$(W_{11})y \leqslant x \to y; x \to y \leqslant (z \to x) \to (z \to y).$$

$$(W_{12})x \leq y \Rightarrow z \rightarrow x \leq z \rightarrow y, y \rightarrow z \leq x \rightarrow z.$$

$$(W_{13})x'' = x; (x'' \to x)' = 0.$$

$$(W_{14})x^{'''}=x^{'};$$

$$(W_{15})x^{'} \rightarrow y^{'} = y \rightarrow x;$$

$$(W_{16})x^{'} \rightarrow y = y^{'} \rightarrow x;$$

$$(W_{17})(x \to y)' = x;$$

$$(W_{18})(y \to x) \to y' \leqslant x';$$

$$(W_{19})(x^{'} \to y^{'}) \to x = x^{'} \to ((x^{'} \to y^{'})^{'} = ((x \to y) \to x^{'})^{'} = y;$$

$$(W_{20})(Commutativity)T(x,y) = T(y,x), S(x,y) = S(y,x);$$

$$(W_{21})(Associativity)T(T(x,y),z) = T(x,T(y,z)), S(S(x,y),z) = S(x,S(y,z));$$

$$(W_{22})(Monotonicity)x \leq y \Rightarrow T(x,z) \leq T(y,z), S(x,Z) \leq S(y,z);$$

$$(W_{23})(Identity)T(x,1) = x, S(x,0) = x;$$

$$(W_{24})(Duality)S(x,y) = T(x',y')', T(x,y) = (S(x'),y')';$$

$$(W_{25})S(x,x') = 1, T(x,x') = 0;$$

$$(W_{26})x \rightarrow (y \rightarrow z) = T(x,y) \rightarrow z;$$

$$(W_{27})T((z \to x), (z \to y)) = z \to T(x, y);$$

$$(W_{28})x' = x \rightarrow 0 = 0 \Rightarrow x = 1.$$

Proof. (W_{11}) Applying (W_1) , we have $y \to (x \to y) = x \to (y \to y) = x \to 1 = 1$. So $y \le x \to y$;

By
$$(x \to y) \to ((z \to x) \to (z \to y)) = (z \to x) \to ((x \to y) \to (z \to y)) = (z \to x) \to (((z \to y) \to y) \to x) = (z \to x) \to (((y \to y) \to z) \to x) = (z \to x) \to ((1 \to z) \to x) = (z \to x) \to (z \to x) \to (z \to x) = 1$$
, we have that for all $x, y, z \in X$, $(x \to y) \le (z \to x) \to (z \to y)$.

$$(W_{12})$$
 Assume that $x \leq y$. Then $(z \to x) \to (z \to y) = z \to ((z \to x) \to y) = z \to ((y \to x) \to z) = (y \to x) \to (z \to z) = (y \to x) \to 1 = (1 \to x) \to y = x \to y = 1$, which implies that $z \to x \leq z \to y$.

Similarly, we have $(y \to z) \to (x \to z) = ((x \to z) \to z) \to y = ((z \to z) \to x) \to y = (1 \to x) \to y = x \to y = 1$.

$$(W_{13})x'' = (x \to 0) \to 0 = (0 \to 0) \to x = 1 \to x = x.$$

$$(x'' \to x)' = (x \to x)' = 1' = 1 \to 0 = 0.$$

$$(W_{14})x^{'''} = ((x \to 0) \to 0) \to 0 = (0 \to 0) \to (x \to 0) = 1 \to (x \to 0) = x^{'}.$$

$$(W_{15})x^{'} \to y^{'} = (x \to 0) \to (y \to 0) = y \to ((x \to 0) \to 0) = y \to ((0 \to 0) \to x) = y \to (1 \to x) = y \to x.$$

$$(W_{16})x' \to y = (x \to 0) \to y = (y \to 0) \to x = y' \to x.$$

$$(W_{17})(x \to y)' = (x \to y) \to 0 = (0 \to y) \to x = 1 \to x = x.$$

$$(W_{18})((y \to x) \to y^{'}) \to x^{'} = (x^{'} \to y^{'}) \to (y \to x) = (y \to x) \to (y \to x) = 1.$$
 So, $(y \to x) \to y^{'} \leqslant x^{'}$.

$$(W_{19})(x^{'}\rightarrow y^{'})\rightarrow x=(y\rightarrow x)\rightarrow x=(x\rightarrow x)\rightarrow y=1\rightarrow y=y, x\rightarrow (x^{'}\rightarrow y^{'})^{'}=x^{'}\rightarrow (y\rightarrow x)^{'}=(y\rightarrow x)\rightarrow x=(x\rightarrow x)\rightarrow y=1\rightarrow y=y.$$
 Therefore, $(x^{'}\rightarrow y^{'})\rightarrow x=x^{'}\rightarrow (x^{'}\rightarrow y^{'})^{'}=y.$

Similarly, we have
$$((x \to y) \to x^{'})^{'} = ((x^{'} \to y) \to x)^{'} = (((x \to 0) \to y) \to x)^{'} = (((y \to 0) \to x) \to x)^{'} = ((x \to x) \to (y \to 0))^{'} = (y \to 0) \to 0 = y.$$

$$(W_{20})T(x,y) = (x \to y')' = (y \to x')' = T(y,x)$$
. Similarly, we have $S(x,y) = S(y,x)$.

$$(W_{21})T(T(x,y),z) = T((x \to y^{'})^{'},z) = ((x \to y^{'})^{'} \to z^{'})^{'} = (((x \to y^{'}) \to 0) \to z^{'})^{'} = (((x \to y^{'}) \to 0) \to (z \to 0))^{'} = (z \to (x \to y^{'}))^{'} = (x \to (z \to y^{'}))^{'} = (x \to (z \to (y \to 0)))^{'} = (x \to (y \to 0)))^{'} = (x \to (y \to 0))^{'} = ($$

Similarly, we have S(S(x, y), z) = S(x, S(y, z)).

 (W_{22}) Due to $x \leqslant y \Leftrightarrow x \to y = 1$, then for all $x,y,z \in X$, it is $(x \to z^{'})^{'} \to (y \to z^{'})^{'} = ((x \to z^{'}) \to 0) \to ((y \to z^{'}) \to 0) = (y \to z^{'}) \to (x \to z^{'}) = x \to y = 1$. Hence, $T(x,z) \leqslant T(y,z)$. $S(x,Z) \leqslant S(y,z)$. Similarly, we have $S(x,z) \leqslant S(y,z)$.

$$(W_{23})T(x,1) = (x \to 1')' = (x \to 1') \to 0 = (0 \to 1') \to x = 1 \to x = x.$$

$$S(x,0) = x' \to 0 = (x \to 0) \to 0 = (0 \to 0) \to x = 1 \to x = x.$$

$$(W_{24})(T(x',y'))' = (x' \to y'')'' = x' \to y = S(x,y).$$

$$(S(x',y'))' = (x'' \to y')' = (x \to y')' = T(x,y).$$

$$(W_{25})S(x,x') = x' \to x' = 1; T(x,x') = (x \to x'')' = (x \to x)' = 1' = 1 \to 0 = 0.$$

$$(W_{26})T(x,y) \to z = (x \to z^{'})^{'} \to z = ((x \to y^{'}) \to 0) \to z = ((x \to (y \to 0)) \to 0) \to z = (z \to 0) \to (x \to (y \to 0)) = x \to ((z \to 0) \to (y \to 0)) = x \to (y \to z).$$

$$\begin{array}{l} (W_{27})T((z\rightarrow x),(z\rightarrow y))=((z\rightarrow x),(z\rightarrow y)^{'})^{'}=((z\rightarrow x)\rightarrow ((z\rightarrow y)\rightarrow 0))\rightarrow 0=z\rightarrow x,\\ \mathrm{and}\ z\rightarrow T(x,y)=z\rightarrow (x\rightarrow y^{'})^{'}=z\rightarrow ((x\rightarrow (y\rightarrow 0))\rightarrow 0=z\rightarrow x. \end{array}$$

 (W_{28}) By assume that $x^{'} = x \to 0 = 0 \Rightarrow 1 = 0 \to 0 = (x \to 0) \to 0 = (0 \to 0) \to x = 1 \to x = x$, we get x = 1.

Proposition 3.3 Let X be a W_d -FI algebra and $x, y, z \in X$, then $(x \to y) \to z = (z \to y) \to x$ implies $x \to (y \to z) = y \to (x \to z)$.

Proof. By
$$(W_6)$$
, we have $x \to (y \to z) = (1 \to x) \to (y \to z) = ((y \to z) \to x) \to 1 = ((x \to z) \to y) \to 1 = (1 \to y) \to (x \to z) = y \to (x \to z)$. Hence, $x \to (y \to z) = y \to (x \to z)$.

Theorem 3.4 A (2,0)-type algebra $(X, \rightarrow, 0)$ is a W_d -fuzzy implication algebra if and only if it satisfies that

$$(W1')(x \to y) \to z = (z \to y) \to x;$$

$$(W2')$$
 $1 \rightarrow x = x;$

$$(W3') x \to x = 1;$$

$$(W4')$$
 If $x \to y = y \to x = 1$, then $x = y$;

$$(W5') 0 \to x = 1$$
, where $1 = 0 \to 0$.

Proof. Immediate from Proposition 3.3 and Definition 2.3.

By (W1') of Theorem 3.4, for distinct $x, y \in X$, we obtain

$$(W_{29})((x \rightarrow y) \rightarrow y) \rightarrow y = x \rightarrow y.$$

Theorem 3.5 Let $(X, \rightarrow, 0)$ be a W_d -fuzzy implication algebras with negation, we define the partial addition

$$x + y := y' \to x. \tag{5}$$

Then (X, +, 0) is an Abelian monoid.

Proof. It is easy to check that 0 is partial addition unit., i.e 0 + x = x + 0 = x.

Next, we will show that x + (y + z) = (x + y) + z, x + y = y + x.

In fact, by (5), we have
$$(x + y) + z = z' \to (x + y) = (z \to 0) \to ((y \to 0) \to x) = (z \to 0) \to (x \to 0) \to y) = (x \to 0) \to (z \to 0) \to y) = (x \to 0) \to (y + z) = ((y + z) \to 0) \to x = x + (y + z).$$

Similarly, it can be proved that x + y = y + x, for any $x, y \in X$. Therefore, (X, +, 0) is an Abelian monoid.

4 Relation between W_d -FI algebras and other logical algebras

4.1 Relation with FI-algebras

In this subsection, we establish the connections between: **Proposition 4.1** Every W_d -FI algebra is an FI algebra, but the inverse is not true.

Proof. From the Definition 2.3 and (3) of Proposition 3.1, it is easy to see that any W_d -FI algebra must be an FI - algebra. By example 3, W_d -FI algebra may be an proper subalgebra of FI-algebra, but FI algebra must not be W_d -FI algebra.

Example 4. Let $X = \{0, a, b, 1\}$ be a finite set of distinct elements. We define

\rightarrow	0	a	b	1
0	1	1	1	1
a	b	1	b	1
b	a	a	1	1
1	0	a	b	1

Then, $(X, \to, 1)$ is an FI-algebra which is not W_d -FI algebra, because $(a \to b) \to b = b \to b = 1 \neq (b \to b) \to a = 1 \to a = a$.

4.2 Relation with RFI-algebras

Proposition 4.2 Every W_d -FI algebra is an RFI- algebra.

Proof. By Proposition 4.1 and Definition 2.3, we have $\forall \in X, x'' = (x \to 0) \to 0 = (0 \to 0) \to x = 1 \to x = x$. Therefore $(X, \to, 0)$ is an RFI- algebra.

In the following example, we show that converse of Proposition 4.3 is not correct in general.

Example 5. Let X = [0, 1], we define $x \to y = min(1, 1 - x + y)$. It is easy to verify that $(X, \to, 0)$ is an RFI-algebra. But the converse of above Proposition is not true.

In fact, we put x=0.1, y=0.2, z=0.3, because $(0.1 \rightarrow 0.2) \rightarrow 0.3 = min(1, 1-0.1+0.2) \rightarrow 0.3 = 1 \rightarrow 0.3 = 0.3$, on the other hand, $(0.3 \rightarrow 0.2) \rightarrow 0.1 = min(1, 1-0.3+0.2) \rightarrow 0.1 = 0.9 \rightarrow 0.1 = min(1, 1-0.9+0.1) = 0.2$, hence, it is not satisfies condition (W_2) .

We have see that W_d -FI algebra classes are a subclasses of RFI-algebras.

4.3 Relation with CFI-algebras

Proposition 4.3 W_d -FI algebra must not be CFI- algebra.

Proof. It is easy to prove that if $x \neq y$, then the condition (I_6) does not hold, i.e., suppose

$$(x \to y) \to y = (y \to x) \to x,$$

then clearly

$$(y \to y) \to x = (x \to x) \to y.$$

Thus, we have x = y, which contradicts to assertion.

4.4 Relation with HFI-algebras

Proposition 4.4 ([7]) The relation between W_d -FI algebra and HFI- algebra is as following:

(1) If $(X, \rightarrow, 0)$ is a W_d -FI algebra such that, for all $x, y, z \in X$,

$$x \to (y \to z) = (x \to y) \to (x \to z) \tag{6}$$

holds, then $(X, \rightarrow, 0)$ is a HFI-algebra.

(2)If $(X, \rightarrow, 0)$ is an HFI-algebra such that, for all $x, y, z \in X$,

$$(x \to y) \to z = (z \to y) \to x$$

holds, then $(X, \rightarrow, 0)$ is a W_d -FI algebra.

Proof. (1) Assume that $(X, \to, 0)$ is a W_d -FI algebra, it is easy to verify that conditions $(HFI_4), (HFI_5)$ of HFI-algebra hold. By $(W_1)x \to (y \to z) = y \to (x \to z)$, and put z = x, we have $x \to (y \to x) = y \to 1 = 1$. So (HFI_1) holds for all $x, y \in X$.

Next, by $x \to (y \to z) = (x \to y) \to (x \to z)$, we have $(x \to (y \to z)) \to ((x \to y) \to (x \to z)) = 1$, which implies (HFI_2) holds for all $x, y, z \in X$. By $1 \to x = x$ and $1 \to x = 1 \Rightarrow x = 1$, so (HFI_3) holds for all $x \in X$. Hence, $(X, \to, 0)$ is a HFI-algebra.

(2) It is easy to prove that if an HFI-algebra $(X, \to, 0)$ satisfies the condition $(x \to y) \to z = (z \to y) \to x$, then $(X, \to, 0)$ is an W_d -FI algebra.

Corollary 4.5 Every self distributive W_d -FI algebra is an HFI-algebra.

Proof. By Proposition 4.4 (1), the proof is clear.

4.5 Relation with BCK-algebras

In 1966, Imai and Iseki [28] introduced two classes of abstract algebras, BCK-algebras. It is well known that the class of MV-algebras is a proper subclass of the class of BCK-algebras. Therefore, both BCK-algebras and MV-algebras are important for the study of fuzzy logic.

In this subsection, we investigate the relation between W_d -FI-algebras and BCK-algebras.

Definition 4.1 [28] An algebraic structure $(A, \rightarrow, 1)$ of type (2, 0) is called a BCK-algebra, if for any $x, y, z \in A$, the following conditions hold:

$$(BCK_1)(x \to y) \to ((y \to z) \to (x \to z)) = 1,$$

$$(BCK_2)1 \to x = x,$$

$$(BCK_3)x \to 1 = 1,$$

$$(L_3)$$
 if $x \to y = y \to x = 1$, then $x = y$.

Theorem 4.6 Every W_d -FI-algebras is a BCK-algebras.

Proof. By Definition 2.4 and (W_6) , (W_8) in Proposition 3.1, the proof is clear.

By the following example we show that every BCK-algebra is not W_d -FI-algebra, in general.

Example 6. Let $X = \{a, b, c, 1\}$ be a finite set of distinct elements. We define

\rightarrow	a	b	c	1
a	1	a	a	1
b	1	1	a	1
c	1	a	1	1
1	a	b	c	1

Then $(X, \rightarrow, 1)$ is a BCK-algebra, and it is not a W_d -FI-algebra, since W_2 is not satisfied

$$(b \rightarrow c) \rightarrow a = a \rightarrow a = 1 \neq a = a \rightarrow b = (a \rightarrow c) \rightarrow b.$$

4.6 Relation with L-algebras

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rump [16]. It turns out that the concept of L-algebra is fundamental in the sense that various algebraic structures, even with several operations like Heyting algebras, (one-side) hoops, (pseudo) MV-algebras or l-group cones, are definable as L-algebra[17-24].

First, we recall some definitions and properties about L-algebras.

Definition 4.2([16]) An L-algebras is an algebra $(L, \rightarrow, 1)$ of type (2,0) satisfying for all $x, y, z \in L$,

$$(L_1)x \to x = x \to 1 = 1, 1 \to x = x;$$

$$(L_2)(x \to y) \to (x \to z) = (y \to x) \to (y \to z);$$

$$(L_3)x \to y = y \to x = 1 \Rightarrow x = y.$$

From the above definition of Rump ([16]), we know that Hilbert algebras are equivalent to implicative BCK-algebras, and they are special L-algebras. L-subalgebra $\{y \to x | y, x \in L\}$ of an L-algebra is an MV-algebra. Next, we give characterizations of L-algebras and discuss relations between W_d -FI algebra and L-algebras.

Theorem 4.7 ([16])Let $(X, \rightarrow, 1)$ be an L-algebra. The following hold for all $x, y, z \in X$:

- $(1) x \leqslant y \Rightarrow z \to x \leqslant z \to y;$
- $(2) \leq \text{is a partial order on } X;$
- (3) x = y if and only if $x \to z = y \to z$, for all $x, y, z \in X$;
- (4) $x, y \le z$ such that $z \to x = z \to y$, then x = y;

$$(5) ((x \to y) \to y) \to y = x \to y;$$

$$(6) ((x \to y) \to y) \to x) \to ((x \to y) \to y) \to z) = x \to z.$$

(7) If
$$X$$
 satisfies condition $(x \to (y \to z)) \to (y \to (x \to z)) = 1$, then $x \to (y \to z) = y \to (x \to z)$.

Theorem 4.8 Any W_d -FI algebra is an L-algebra, but the inverse is not true.

Proof. Let $(X, \rightarrow, 0)$ is a W_d -FI algebra, any $x, y, z \in X$, by equations (W_1) , (W_2) and (W_6) , respectively, it is easy to see that

$$(x \to y) \to (x \to z) = x \to ((x \to y) \to z) = x \to ((z \to y) \to x) = (z \to y) \to (x \to x) = (z \to y) \to 1 = 1,$$

$$(y \to x) \to (y \to z) = y \to ((y \to x) \to z) = y \to ((z \to x) \to y) = (z \to x) \to (y \to y) = (z \to x) \to 1 = 1,$$

Hence,
$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$
. Thus (L_2) holds in X .

From definition 2.3, we see that $(L_1 \text{ and } (L_3) \text{ hold in } X. \text{ Therefore, } (X, \rightarrow, 0) \text{ be a L-algebra.}$

Example 7. Let $X = \{0, a, b, c, d, 1\}$ be a set and operation \rightarrow be defined as follows:

\rightarrow	0	\overline{a}	b	c	d	1
0	1	1	1	1	1	1
a	d	1	1	$\begin{matrix} 1 \\ d \\ c \\ 1 \\ d \end{matrix}$	1	1
b	c	d	1	c	d	1
c	b	b	b	1	1	1
d	a	b	b	d	1	1
1	0	a	b	$\stackrel{\circ}{c}$	d	1

Then $(X, \to, 1)$ is an L-algebra which is not a W_d -FI algebra, since $(b \to c) \to d = 1 \neq (d \to c) \to b = d \to b = b$. Therefore, the class of W_d -FI algebras is a proper subclass of L-algebras.

Theorem 4.9 Let $(X, \rightarrow, 1)$ is an L-algebra satisfying the condition

$$(x \to y) \to z = (z \to y) \to x$$

for $x, y, z \in X$, then $(X, \rightarrow, 1)$ is a W_d -FI algebra.

Proof. By Definition 2.4 and Theorem 4.3 we have $x \to (y \to z) = (1 \to x) \to (y \to z) = ((y \to z) \to x) \to 1 = ((x \to z) \to y) \to 1 = (1 \to y) \to (x \to z) = y \to (x \to z)$. So, $x \to (y \to z) = y \to (x \to z)$. Thus, L-algebra $(X, \to, 1)$ is a W_d -FI algebra.

Definition 4.3 ([21]) Let $(X, \rightarrow, 1)$ be an L-algebra. The following hold for all $x, y \in X$:

(1) If L-algebra $(X, \rightarrow, 1)$ satisfies

$$x \to (y \to x) = 1,$$

then it is called a KL-algebra.

(2) If L-algebra $(X, \rightarrow, 1)$ satisfies

$$(x \to (y \to z)) \to (y \to (x \to z)) = 1,$$

then it is called a CL-algebra.

Proposition 4.10 ([21]) Any CL-algebra is a KL-algebra.

Theorem 4.11 If $(X, \to, 0)$ is a W_d -FI algebra, then $(X, \to, 0)$ is a CL-algebra and it is also a KL-algebra.

Proof. By Theorem 4.7, any W_d -FI algebra $(X, \to, 0)$ is an L-algebra, using (W_1) and (W_3) , we get $(x \to (y \to z)) \to (y \to (x \to z)) = (y \to (x \to z)) \to (y \to (x \to z)) = 1$. Hence we get $(X, \to, 0)$ is a CL-algebra. By **Proposition 4.8**, we get $(X, \to, 0)$ is a KL-algebra.

5 Generalized W_d -FI algebras

In this Sect., the concept of GW_d -FI-algebra is introduced, and some properties of it are investigated. We discuss on a distributive GW_d -FI-algebra. The relationship between distributive GW_d -FI-algebra and Hilbert algebra is considered, and we prove that every distributive GW_d -FI-algebra is a Hilbert algebra, but the converse may not be true, with an example being given to illustrate it. Moreover, we prove that every GW_d -FI-algebra is a BE-algebras.

5.1 Notes of Generalized W_d -FI algebras

The condition (W_2) of Definition 2.4 is a strong condition, in this Sect., we abandon the condition W_2 , redefine generalized W_d -fuzzy implication algebras which is a generalization of W_d -FI-algebra. In order to show the existence of the structures, we presented some examples. We then explore some properties of these structures. We start with the following definition.

Definition 5.1 A (2,0)-type algebra $(X, \to, 0)$ is said to be a generalized W_d -Fuzzy implication algebra, shortly, GW_d -FI algebra, if the following conditions hold for all $x, y, z \in X$:

$$(GW_1)x \to x = 1;$$

$$(GW_2)1 \to x = x;$$

$$(GW_3)x \to (y \to z) = y \to (x \to z);$$

$$(GW_4) \text{ if } x \to y = y \to x = 1, \text{ then } x = y;$$

$$(GW_5)0 \to x = 1, \text{ where } 1 = 0 \to 0.$$

Let us give two examples.

Example 8. Let $X = \{0, a, b, c, 1\}$ be a set and operation \rightarrow be defined as follows:

\rightarrow	0	a	b	c	1
0	1	1	1	1	1
a	1	1	b	c	1
b	0	a	1	1	1
c	1	1	b	1	1
1	0	a	b	c	1

Then, $(X, \rightarrow, 0)$ is a GW_d -FI-algebra.

Example 9. Let $X = \{0, a, b, c, d, 1\}$ be a set and operation \rightarrow be defined as follows:

\rightarrow	0	a	b	c	d	1
0	1	1	1	1	1	1
a	0	1	b	c	d	1
b	0	a	1	c	d	1
c	0	1 1 a a a	b	1	d	1
d	0	a	b	c	1	1
1	0	a	b	c	d	1

Then, $(X, \rightarrow, 0)$ is a GW_d -FI-algebra.

Let us state and prove some properties.

Proposition 5.1 Let $(X, \to, 0)$ be a generalized GW_d -FI algebra and $x, y \in X$. Then

$$(5-1)x \to 1 = 1;$$

$$(5-2)x \to (y \to x) = 1.$$

Proof. For any $x \in X$, we have $x \to 1 = x \to (0 \to x) = 0 \to (x \to x) = 0 \to 1 = 1$. Hence, $x \to 1 = 1$.

$$x \rightarrow (y \rightarrow x) = y \rightarrow (x \rightarrow x) = y \rightarrow 1 = 1$$
. So, $x \rightarrow (y \rightarrow x) = 1$.

Definition 5.2 ([25,26])A BE-algebra is a non-empty set X with a constant 1 and a binary operation \rightarrow satisfying the following axioms:

$$(BE_1)x \to x = 1,$$

$$(BE_2)x \to 1 = 1,$$

$$(BE_3)1 \rightarrow x = x,$$

$$(BE_4)x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$$
, for all $x, y, z \in X$.

Proposition 5.2 Every GW_d -FI algebra $(X, \rightarrow, 0)$ is a BE-algebra, but the converse may not be true.

Proof. By Definition 5.1, Definition 5.2 and Proposition 5.1, the proof is completed.

Example 10. Let $X = \{0, a, b, 1\}$ be a set and operation \rightarrow be defined as follows:

\rightarrow	0	a	b	1
0	1	a	b	1
a	0	1	b	1
b	0	a	1	1
1	0	a	b	1

It is easy to see that $(X, \to, 0)$ is a BE-algebra, but it is not GW_d -FI algebra, since $0 \to a = a \ne 1$.

Definition 5.3 A GW_d -FI algebra $(X, \to, 1)$ is said to be self-distributive if $x \to (y \to z) = (x \to y) \to (x \to z)$, for all $x, y, z \in X$.

Definition 5.4 ([27]) A Hilbert algebra is an algebra $(A, \rightarrow, 1)$ of type (2,0) such that the following axioms are fulfilled for every $x, y, z \in A$:

$$(H_1) x \rightarrow (y \rightarrow x) = 1;$$

$$(H_2)(x \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = 1;$$

$$(H_3)$$
 If $x \to y = y \to x = 1$, then $x = y$.

From Definition 5.1, 5.3, and 5.4, we have the following results.

Proposition 5.3 Every self-distributive GW_d -FI algebra $(X, \to, 1)$ is a Hilbert algebra. In this case, (X, \leqslant) is a poset by defining an order relation \leqslant such that $x \leqslant y$ iff $x \to y = 1$ (called the natural order on X), with respect to this order, 1 is the greatest element of X.

Proof. (1) By using (5-2) of Proposition 5.1, we get that (H_1) holds. Using the distributive law again, we obtain that (H_2) holds. (GW_4) coincides with (H_3) . The proof is completed.

(2) By (GW_1) , $x \to x = 1$, we get $x \le x$. By (GW_4) , we obtain $x \le y, y \le x \Rightarrow x = y$. Now, let $x, y, z \in X$, by using self-distributive law again, from $x \le y, y \le z$, we get

$$x \to z = 1 \to (x \to z) = (x \to y) \to (x \to z) = x \to (y \to z) = x \to 1 = 1.$$

Thus, $x \leq z$. Hence, (X, \leq) is a partial order set.

Remark. In Proposition 5.3, the condition self-distributive is necessary. The following example is given to illustrate it.

Example 11. If we consider Example 8, then we have

$$(b \to (c \to a)) \to ((b \to c) \to (b \to a)) = (b \to 1) \to (1 \to a) = 1 \to a = a \neq 1.$$

Hence, in Example 8, self-distributive law is not satisfied. So $(X, \rightarrow, 1)$ is a GW_d -FI algebra, but it is not a Hilbert algebra.

5.2 Generalized W_d -FI algebras and W-eo algebra

Definition 5.5 ([30]) Let L be a non-empty set, \rightarrow : $L \times L \to L$ a binary operation and \top a fixed element of L. The triple $(L; \to; \top)$ is a weak extended-order algebra, shortly w-eo algebra, if for all $a, b, c \in L$, the following conditions are satisfied:

 $(O_1)a \to \top = \top$ (upper bound condition);

 $(O_2)a \rightarrow a = \top \text{(reflexivity condition)};$

 $(O_3)a \rightarrow b = b \rightarrow a = \top \Rightarrow a = b$ (antisymmetry condition);

 $(O_4)a \rightarrow b = \top$ and $b \rightarrow c = \top \Rightarrow a \rightarrow c = \top$ (weak transitivity condition).

Proposition 5.4 Every self-distributive GW_d -FI algebra $(X, \rightarrow, 0)$ is a W-eo algebra.

Proof. By using (5-1) of Proposition 5.1, we get (O_1) hold. By (GW_1) and (GW_4) , we get (O_2) , $and(O_3)$ hold, respectively. We take $1 = \top$, by $a \to b = 1$ and $b \to c = 1$, we have $a \to c = 1 \to (a \to c) = (a \to b) \to (a \to c) = a \to (b \to c) = a \to 1 = 1$, so $a \to c = 1$. Hence, (O_4) holds, i.e., $(X, \to, 0)$ is a W-eo algebra.

6 Conclusion

The aim of this paper is to study the relations between W_d -FI-algebras and other logical algebras such as FI-algebras, RFI-algebras, CFI-algebras, BCK-algebras, Hilbert-algebras and L-algebras, etc. The concept of GW_d -FI-algebra is introduced, and some properties of it are investigated. For the future research, we will investigate new structures on GW_d -algebras.

Acknowledgements

The authors are extremely grateful to the overall presentation of the paper.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Data availability statement

The research data are not shared.

References

- [1] S.Massanet, G.Mayor, R.Mesiar, J.Torrens, On fuzzy implications: an axiomatic approach, International Journal of Approximate Reasoning, 2013,54:1471-1482.
- [2] Wu Wangming, Fuzzy implication algebra, Fuzzy systems and Mathematics, No.1(1990):56-64.
- [3] Daowu Pei, A Survey of fuzzy implication algebras and their axiomatization. International Journal of Approximate Reasoning, 2014, 55:1643-1658.
- [4] Z.W.Li, G.H.Li, Some properties of fuzzy implication algebras, Fuzzy system and Mathematics. 2000, 14(SI):19-21(in Chinese).
- [5] Z. Xu, "On the structural properties of fuzzy logic-based algebras in computational frameworks," J. Fuzzy Systems and Applications, vol. 35, no. 4, pp. 233–242, 2021.).
- [6] W.Chen, Some characters of regular fuzzy implication algebras, Fuzzy system and Mathematics. 2001, 15(4):24-27(in Chinese).
- $[7] \ \ \text{F.A.Deng, J.L.Li, } \\ W_d \text{fuzzy implication algebras, J.Ha'erbin Norm. Univ. (Nat. Sci. Ed.)} \\ 1996,12(2):18-21 (\text{in Chinese}). \\$
- [8] H.R.Zhang, L.C.Wang, Properties of LFI-algebras and residuated lattice, Fuzzy system and Mathematics. 2004, 18(2):13-17(in Chinese).
- [9] H.X.Wei, X.Q.Li, Rough set algebras and fuzzy implication algebras, Comput. Eng, APP., 2009,45(18):38-39(in Chinese).
- [10] Y.Q.Zhu, A logic system based on FI-algebras and its completeness, Fuzzy system and Mathematics, 2005, 19(2):25-29(in Chinese)
- [11] Y.Zhu, Y.Xu, On filter theory of residuated lattices, Inf. Sci. 180(19)(2010)3614-3632.
- [12] Z.W.Li, C.Y.Zheng, Relation between fuzzy mplication algebra and MV algebras, J.Fuzzy Math., 2001, 9(1):201-205(in Chinese).
- [13] S.L.Chen, Rough sets and fuzzy implication algebras, Comput. Eng, Sci., 2009, 31(4):134-136(in Chinese).
- [14] M.Kondo, W.A. Dudek, Filter theory of BL-algebras, Soft Comput. 12(5) (2008):419-423.
- [15] Ivan Chajda, Jan Paseka, Tense operators in fuzzy logic, Fuzzy Sets Syst 276(1)(2015):100-113.
- [16] W.Rump, L-algebras, self-similarity and l-groups. J Algebra 320(6)(2008):2328-2348.
- [17] Rump, W., Yang, Y.C., Non-commutative logic algebras and algebraic quantales. Ann. Pure Appl. Logic 165(2014):759-785.
- [18] Yali Wu, Yichuan Yang, Orthomodular lattices as L-algebras. Soft Computing 24(2020):14391-14400.
- [19] YL Wu, J.Wang, YC Yang, Lattice-ordered effect algebras and L-algebras. Fuzzy Sets Syst 369(2019):103-113.
- [20] juan Hua Xiu, State L-algebras and derivations of L-gebras. Soft Computing 25(2021):4201-4212.
- [21] Lavinia Corina Ciungu, Results in L-algebras. Algebra Univers 82(2021):1-18.
- [22] Wolfgang Rump, L-algebras in logic, algebra, geometry, and topology. Soft Computing 24(2020):3077-3085.
- [23] Jing Wang, Yali Wu, Yichuan Yang, Basic algebras and L-algebras. Soft Computing 24 (2020):14327-14332.
- [24] W.Rump, Prime L-algebras and right-angled Artin groups. SemigroupForum 106(2023):481-503.
- [25] Kim HS, Kim YH, On BE-algebras. Sci Math Jpn 66(2007):113-116.

- [26] A. Rezaei, S. Borhani Nejad Rayeni, Hee Sik Kim, On BE-ringoids. Soft Computing 27(2023):1379-1388.
- [27] A. Rezaei, A. Borumand Saeid, R. A. Borzooei, Relation between Hilbert Algebras and BE-Algebras. Applications and Applied Mathematics: An International Journal (AAM), 8(2)(2013): 573-584.
- [28] K.Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica 2(3) (1978):1-26.
- [29] M. Aaly Kologani, Relations between L-algebras and other logical algebras. Journal of Algebraic Hyperstructures and Logical Algebras 4(1)(2023): 27-46.
- [30] Guido, C., Toto, P.: Extended-order algebras. J. Appl. Log. 6(2008): 609-626.