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Abstract 

 

This paper proposes to evaluate how different machine learning techniques can be used to predict daytime power 

generation based on the "Daily Power Generation Data" data set. As a result of six models, which contain Random 

Forest Regressor, Decision Tree Regressor, Nearest Neighbors, Linear Regression, MLP Regressor, and SVR, a 

clear understanding has been accomplished by assessing the performance using multiple metrics. First, the Random 

Forest Regressor turned out to be the best in terms of the Mean Squared Error (MSE) of 3.57E-06, which was the 

lowest among the three ML models. The introduction of the paper highlights the role of precise planning of the 

power market and the consecutive sections describing the topic mathematically. The table below, with a total list 

of performance issues, explains why the Random Forest Regressor is the superior full-proof model using the lowest 

MSE, highest explained variance, and great resistance to outlying samples. The paper thus gave various useful 

approval criteria that we can largely choose the best model out of them because the Random Forest Regressor was 

able to get the highest performance metrics.  
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1. Introduction 

The escalating energy demand and environmental concerns are driving a significant transformation in the global 

energy landscape, necessitating a shift towards innovative and sustainable power generation solutions [1]. Power 

generation optimization, amidst technological advancements and resource constraints, is paramount in this 

endeavor [2]. Fossil fuels have long been the backbone of the global energy system, but their limited availability, 

environmental impacts, and geopolitical complexities underscore the urgency of transitioning to cleaner energy 

sources. This research focuses on optimizing power generation to balance rising energy needs with environmental 

preservation [3].  The guiding principle of this paper is to provide comprehensive insights into power generation 

phenomena and advocate for sustainable practices [4]. By informing policy decisions, facilitating technological 

advancements, and engaging diverse stakeholders, including scientists, engineers, policymakers, and 

environmentalists, we aim to contribute to transforming the global energy landscape and achieving a sustainable 

future. The study's research objectives serve as road markers, directing attention toward innovative and sustainable 

solutions to power-generating issues. We delve into three key research questions: Firstly, we explore the principal 

challenges and limitations associated with current power generation methods, aiming to identify barriers to 

sustainability and effectiveness. Secondly, we investigate cutting-edge technologies that could enhance electricity 

generation efficiency, driving our technological research forward. Finally, we examine strategies to minimize the 

environmental impact of power generation and promote sustainability, guided by our commitment to 

environmental stewardship and the preservation of ecological equilibrium [5,6]. As we embark on this intellectual 

voyage toward innovation, our collective endeavor is to seek creative, sustainable, and inclusive approaches to 

energy generation. This research paper will focus on current power-generating methods, explore technological 
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advancements, and advocate for environmentally friendly practices [7]. We invite the reader to join us on this 

journey, which promises to be both enlightening and impactful, as we contribute to the development of innovative 

power generation sectors and work towards sustaining the Earth's oasis state for future generations. 

2. Literature Review 

Power generation is vital for modern societies, supporting industries, infrastructure, and daily life. With rising 

energy demand worldwide, ensuring efficient, sustainable, and reliable power generation is crucial. This review 

covers traditional and renewable energy sources, like solar and wind power, and investigates smart grid 

technologies to improve system efficiency and resilience.. 

Within the sphere of solar energy, achieving optimal solar radiation levels is paramount for the effective design 

and operation of solar energy systems. Research endeavors such as [8] delve into innovative modeling techniques, 

like the hybrid PSO-ELM model, which significantly enhances the accuracy of daily solar radiation estimation, 

particularly in regions where comprehensive onsite data is lacking. Moreover, [9] focuses on advancing power 

prediction methodologies for photovoltaic plants through the application of sophisticated machine learning 

algorithms. Concurrently, [10] introduces a novel hybrid model, the SDA-GA-ELM, tailored for precise hourly 

estimation of PV power production, showcasing the relentless pursuit of accuracy in solar energy forecasting. 

Meanwhile, the transition to smart grids presents a host of complex challenges, including demand-side 

management, cybersecurity, and the optimization of grid infrastructure. The evaluation conducted in [11] provides 

invaluable insights into the effectiveness of machine learning algorithms within smart grid technologies, 

highlighting the need for further research to optimize data processing and enhance network management 

capabilities. Additionally, [12] introduces LSTM-PC, an advanced model aimed at accurately forecasting PV plant 

energy production, addressing inherent challenges such as weather-dependent predictability and fluctuating energy 

demand. 

Furthermore, [13] undertakes the crucial task of predicting greenhouse gas emissions from Turkey's electricity 

sector, employing state-of-the-art deep learning techniques alongside traditional methodologies. This research 

underscores the urgent need to curb emissions and transition to cleaner energy sources, given the alarming rise in 

fossil fuel consumption and its detrimental environmental impact. 

Navigating the complexities of power system operation requires innovative solutions to effectively manage 

uncertainty. [14] presents a pioneering method for generating statistically valid scenarios from probabilistic 

projections, facilitating improved decision-making in power system management. Meanwhile, [15] proposes a 

data-driven framework for accurate monthly renewable energy forecasts, leveraging advanced techniques like STL 

and LSTM to enhance prediction performance and ensure grid stability. 

Lastly, ensuring grid observability remains paramount for efficient electricity industry operation, as discussed in 

[16]. By employing state estimation approaches and machine learning techniques, this study showcases the 

potential for optimizing grid operation under varying conditions, paving the way for real-time status prediction 

and improved system resilience in the face of evolving energy demands and environmental challenges. 

In summary, this literature review underscores the imperative of transitioning to clean and sustainable technologies 

within the power generation sector. Collaboration among stakeholders, along with active interdisciplinary research, 

is essential for navigating the evolving energy landscape and fostering the development of a resilient, resourceful, 

and environmentally friendly power generation system that meets the needs of society while minimizing 

environmental impact. 

3. Dataset 

3.1 Dataset Description 

The "Daily Power Generation Data" dataset [17], is notable for its comprehensive information on power generation 

activities, offering insights sorted by geographical stations. Covering a significant period from September 1, 2017, 

to January 19, 2023, this dataset provides a detailed account of electricity production history, enabling a deep 

understanding of power generation dynamics over time. However, it's essential to highlight significant data gaps 

on specific dates, including October 2, 2017, November 19, 2017, November 26, 2017, April 3, 2018, and April 

4, 2018, as well as the prolonged gap from March 19, 2020, to May 31, 2020. These gaps obscure critical insights 

into power generation during these periods, presenting challenges for comprehensive analysis and decision-making 

processes.  

Furthermore, the dataset is available in two distinct file formats, necessitating precise processing and analysis to 

ensure consistency and accuracy across both formats. Overcoming these challenges is paramount for reliable data 

preparation, particularly for predictive analysis and informed decision-making in energy management. Exploring 

strategic approaches to address data gaps and associate power generation processes with level estimations will be 

essential to enhance the dataset's trustworthiness and usefulness for future analysis. By confronting these 
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challenges head-on, researchers can unlock valuable insights and facilitate informed decision-making in the realm 

of power generation dynamics. 

3.2 Dataset Pre-processing Steps  

Before commencing the analysis of daily power generation data, a meticulous preparatory phase was undertaken 

to ensure the dataset's integrity and consistency. The subsequent processes delineate the preprocessing [18] 

methods employed: 

 Handling Missing Data: The identification and resolution of dates with missing data involved a thorough review 

to understand the underlying reasons. Imputation techniques were then applied to fill these gaps, offering 

researchers flexibility in choosing methods tailored to the data's nature and analytical objectives. Techniques 

such as mean imputation, interpolation, or predictive modeling were considered based on the context of the 

missing data and the research objectives. 

 File Format Harmonization: Given the disparity in file formats across the dataset, a harmonization method was 

implemented to ensure accurate representation of the dataset. This involved converting and aligning the 

storage format to establish a well-ordered structure conducive to future analyses. Additionally, efforts were 

made to reconcile any discrepancies in data encoding or formatting conventions between the two files to ensure 

seamless integration and consistency. 

 Standardization of Units: A systematic standardization procedure was executed on the dataset's units of 

measurement to enhance clarity and facilitate comparisons across variables. Specifically, a methodical 

transformation from mega units (MU) to megawatts (MW) was conducted, promoting a cohesive and uniform 

analysis.  

This conversion facilitated a more intuitive understanding of power generation metrics and eliminated potential 

confusion arising from disparate unit representations.  Ensuring dataset integrity was crucial during preparation, 

with subsequent verifications conducted to address any inconsistencies. Through cross-variable consistency tests, 

researchers scrutinized relationships between variables, rectifying any discrepancies detected to ensure coherence 

and accuracy.  

3.3 Descriptive statistics  

Descriptive statistics were instrumental in comprehensively understanding the traits and patterns within the "Daily 

Power Generation Data," offering a quantitative overview of key characteristics and scrutinizing the dataset's major 

tendencies and variation. Spanning from September 1, 2017, to January 19, 2023, the dataset captures a rich 

tapestry of temporal dynamics in daily power generation. Across diverse power stations, each contributing 

uniquely to the overall landscape, computed descriptive statistics shed light on individual performance metrics.  

The dynamic heat map in Figure 1 illustrates the daily power generating statistics. By utilizing color gradients, it 

reveals the variations in power levels over time and across different stations, providing valuable information on 

geographical and temporal trends. 

 

Figure 1. Heatmap of the Dataset 
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Figure 2's histogram vividly displays variations between projected and actual power generation, using bars to 

represent real data. 

 

Figure 2. Histograms of the Dataset 

4. Results 

This area is devoted to the outcomes of applying several machine learning cases to the "Daily Power Output Data" 

dataset. The model was used in the back-end system to forecast power generation from different power stations, 

using features such as Expected Power Generation, Actual Power Generation, Deviation, and a few others. The 

objective of this study is to test the models and select the one that provides better power generation prediction than 

the other. 

The following machine learning models were evaluated: 

1. RandomForestRegressor 

2. DecisionTreeRegressor 

3. NearestNeighbors 

4. LinearRegression 

5. MLPRegressor 

6. SVMRegressor 

For each model, we developed a set of indicators to offer a comprehensive insight into the model's accuracy in 

forecasting power production. The metrics that we will consider are The Mean Squared Error (MSE), the Root 

Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Explained Variance Score (EVS), the Max 

Error, the Median Absolute Error (MedAE), the Mean Absolute Percentage Error (MAPE), the R-squared (R2), 

the Modified Tchebyche. 

The commingling of the forthcoming segments will hone in on the exact results concerning each design, thereby 

supplying a wholesome grasp of their pros and cons in capturing the specialized details of the electricity-producing 

dataset. This analysis will provide the required basis for making more informed decisions about the most suitable 

model choice for forecasting power generation. 

4.1 Machine Learning Models  

In this sub-unit, we talk in detail about the specific machine learning models or the ML models that are utilized in 

analyzing the "Daily Power Generation Data" dataset. Participants are provided with a set of the best-suited tools 

for predictive analytics that have different design features and mathematical foundations, leading to a wide range 

of predictive analytics models. The choice of these models is the very purpose of representing the highly 

interrelated nature of the data, which contributes to the overall picture of the power generation processes [19]. 

Random Forest Regressor: 

Explanation: The Random Forest Regressor is an ensemble learning method that uses a collection of decision trees 

formed during training. This method works by combining the trees' forecasts. The forest delivers a robust and 

accurate model. Every tree is trained on a different slice of the data, which lowers the overall diversity of datasets, 

thus reducing the associated risk of overfitting. 
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Mathematical Foundation:  

Let h(𝑥, 𝜃𝑖) represent the prediction of the i-th tree in the forest. The final prediction of the Random Forest is given 

by averaging these individual predictions: 

𝐻(𝑥) =
1

𝑁
∑

𝑁

𝑖=1

ℎ(𝑥, 𝜃𝑖) 

Decision Tree Regressor: 

Explanation: A Decision Tree Regressor evenly splits its dataset into subsets, the most important feature at each 

node. A simple averaging of the relative target variables at the leaves of the decision tree achieves the final output. 

A decision tree is natural and complex enough to represent relationships of the data that are not linear. 

Mathematical Foundation: Let  𝑅𝑚 represent the region represented by the 𝑚-th leaf node, and 𝑦‾𝑚be the mean of 

the target variable in  𝑅𝑚. The prediction is given by: 

𝐻(𝑥) = ∑

𝑀

𝑚=1

𝑦‾𝑚𝐼(𝑥 ∈ 𝑅𝑚) 

Nearest Neighbors: 

Explanation: The k-nearest Neighbor algorithm predicts a desired variable based on the average of the k-nearest 

neighbors in the feature space. It hypothesizes that the same series of inputs results in the same output values, so 

it will be weighted. 

Mathematical Foundation: For a given point x, the prediction is the average of the k nearest neighbors' target 

values: 

𝐻(𝑥) =
1

𝑘
∑

𝑘

𝑖=1

𝑦𝑖  

Linear Regression: 

Explanation: Linear regression assumes a straight-line association between the target variable and the independent 

variables through linear function. However, the linear relationship between the independent variables and the 

outcome variable is also assumed. 

Mathematical Foundation: Given features X, weights θ, and bias b, the prediction is given by: 

𝐻(𝑋) = 𝑋 ⋅ 𝜃 + 𝑏 

 

MLP Regressor (Multi-Layer Perceptron): 

Explanation: MLP Regressor is a class of multilayered neural networks based on the structure of two-layer 

networks with input, intermediary, and output layers. The network has the power to unveil the hidden links in the 

data by propagating the activating neuron signals throughout it. 

Mathematical Foundation: For a given input X, the output of the network is calculated through the activation of 

neurons in each layer: 

𝐻(𝑋) = 𝜎(𝑊(2) ⋅ 𝜎(𝑊(1) ⋅ 𝑋 + 𝑏(1)) + 𝑏(2)) 
SVR (Support Vector Regressor): 

Explanation: SVR utilizes support vectors to determine a nonlinear hyperplane with the fewest total deviations 

from the given data for the best projections in an artificially created space. It provides a useful function of recording 

non-respective relations between data. 

Mathematical Foundation: Given input features X, target values y, a set of support vectors, and a kernel function 

K, the prediction is given by: 

𝐻(𝑋) =∑

𝑛

𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑋, 𝑋𝑖) + 𝑏 

where 𝛼𝑖are support vector weights, 𝑦𝑖  are target values, 𝑋𝑖are support vectors, and b is a bias term. 
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Delving into the mathematical details governing these models' models lends a good insight into how they work, 

making the subsequent interpretation of the results more efficient. 

4.2 Performance Metrics  

The performance metrics employed for assessing machine learning models before using the "Daily Power 

Generation Data" dataset have been designed for a particular reason. The metrics are used to assess model 

predictive performance and define different aspects of performance. 

Mean Squared Error (MSE): Explanation: MSE calculates the squared deviation of actual values from predicted 

values and their average. It scores larger deviations harder than small errors, which, in turn, provides a measure of 

overall model accuracy. 

Interpretation: The formation of the MSE lower values indicates an optimal performance of the model better that 

builds upon small prediction errors. 

Root Mean Squared Error (RMSE): Explanation: RMSE is an algebraic formula of MSE, which makes it more 

comprehensible as RMSE tells errors in the same unit as the target variable. 

 Interpretation: Like MSE, smaller RMSE values primarily point to higher accuracy of the model. 

Mean Absolute Error (MAE): Explanation: MAE presents the average of the deviation between the real value 

and the predicted value. It is a very rigorous test of the accuracy of the model's prediction capability. 

 Interpretation: Units of lower MAE are believed to have higher accuracy since they more suitably ignore outliers. 

Explained Variance Score (EVS): Explanation: EVS indicates the model accuracy by the ratio of residual 

variance among the explained variance of the target variable. A score of 1 means the perfect prediction, and a 

margin below indicates less accurate predictions. 

 Interpretation: EVS observations with a higher value display better concordance, while a 1 score stands for the 

perfect fit, reflecting the actual estimation. 

Max Error: Explanation: The Max Error expresses the largest possible difference in absolute values of the 

predicted and actual values. It determines the largest error between the actual observation(s) and the forecast(s) 

produced by machine learning.  

Interpretation: Smaller Max Error relevance’s mean less severe prediction disparate error indices. 

Median Absolute Error (MedAE): Explanation: MedAE stands for the Median absolute difference between the 

expected and resulted outcomes. It introduces the means to assess prediction erroneousness.  

Interpretation: With regard to AraE data, smaller values indicate more accuracy, especially in datasets with outliers. 

MAPE (Mean Absolute Percentage Error): Explanation: MAPE gives the common average percentage error 

that occurred between the actual and the predicted values, which enables us to estimate the size of errors. 

 Interpretation: Larger MAPEs indicate worse accuracy and the advantage of indicating errors as a percentage of 

the errors. 

R-squared (R2): Explanation: The R2 explains the model in terms of the percentage of variance in the target 

variables, which the model explains. A ratio of 1 means that the model perfectly fits the data, while 0 means that 

there is no connection modeled between the predictors and the dependent variable. 

 Interpretation: Stronger R2 values reflect a better model fit when 1 is ideal, with perfect variance explained. 

Modified Tchebycheff Distance (MTD): Explanation: MTD compares the similarity between two probability 

distributions, giving the measure of how close and productive the models are that are aiming at predicting the true 

distribution of the target variable.  

Interpretation: Lower MTD (mean target deviation) represents better tuning between forecasts and the real 

phenomenon. 

Relative root mean squared: Explanation: RMMSE restructures RMSE to take the mean of the observed values, 

facilitating the comparison of a range of datasets. Interpretation: Lower RRMSE values are proposed that model 

performance is much higher while the dataset is large enough. 

Willmott Index: Explanation: The Willmott Index employs preferred risk, negativity, and correlation to deduce 

whether the model functioned properly. It rises from -1 to 1, with 1 standing for excellent harmony. 
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 Interpretation: Values closer to 1 mean high accuracy of the model if the weighted average comprising both 

associations and bias is not high enough. 

Mean Bias Error (MBE): Explanation: MBE figures out the average difference between the observed and 

estimated values, which is useful for identifying systematic errors. Interpretation: MBE values close to 0 inform 

us that a machine learning model is highly unbiased and its predictions are free of any biases. 

Standard Deviation (SD): Explanation: SD indicates the level of the split between the predicted values by 

indicating the amount of variation or dispersion in the values set. It is able to give us reliable information and a 

route of consistency. Interpretation: Shorter SDs imply smaller spreads around the mean. 

Knowing what the performance metric measures and how to interpret it will unite all the ML models' contributions 

to predicting power generation based on the given dataset. 

4.3 Regression Results 

Here, we go further and peek into the results of our machine-learning model experiments using a variety of 

measures. The main goal is to conduct a thorough examination of the models' abilities to accurately predict power 

generation issues within a given set of "Daily Power Generation Data." Following the information conveyed in the 

above result, it is evident that a series of different metrics are being used to highlight different aspects of predictive 

performance individually.  The Table 1 below showcases the performance metrics for each evaluated machine-

learning model. 

Table 1: Regression Models Results 

 

Discussion of Key Findings 

1. Random Forest Regressor: Laboratory experimental results revealed the lowest MSE, RMSE, and MAE, 

consequently showing highly precise predictions. 

High EVS and R2 values indicate great modeling ability for the data. 

Demonstrates a less maximum absolute error and medAE, suggesting good removal of outliers. 

2. Decision Tree Regressor: It allows for the ability to compete in order to have performance metrics across 

measures. 

High Willmott Index score and R2 values that are high suggest a good fit for the case data. 
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Only 0.4 and 2.15 units of MAE and Max Error are higher than that of Random Forest, respectively. 

3. Nearest Neighbors: Less MAE and MedAE are evident, suggesting high accuracy and precision when predicting 

real energy generation values. 

Diagnostic R2 and EVS are significantly less than those of Random Forest and Decision Tree; hence, they reflect 

a smaller portion of the response variability. 

4. Linear Regression: A will not miserably (done reasonably well) in case of moderate values under most of the 

metrics. 

Ideally, the R-squared and adjusted R-squared values (R2 and EVS) of tree-based models should be higher than 

those of tree-based models when predicting non-linear relationships. 

5. MLP Regressor: One of the things that this video does best is eloquently illustrate complex relationships with 

competitive performance metrics. 

The Max Error in this model has also been slightly higher than in Random Forest and Decision Tree models. 

6. SVR: The models fell ahead of every other model: Negative R2 and EVS imply the lack of a suitable 

representation of the underlying pattern within the data. 

The Random Forest Regressor [20] achieves the best performance results among the considered models according 

to the complete assessment for the given dataset, which suggests it to be the most probable model for the power 

production prediction. Its joint of low error metrics high explained variance, and robustness on outliers contribute 

to the fact that it is the top-notch method for tackling such a problem.  

5. Conclusion 

In summary, this research aims to achieve accurate forecasts of power generation using a data-driven approach 

accomplished by in-depth analysis of the performance of the multiple machine learning models in the context of 

the "Daily Power Generation Data" dataset. Exploration covers six models: Random Forest Regressor, Decision 

Tree Regressor, Nearest Neighbors, Linear Regression, MLP Regressor, and SVR Evaluated by Performance 

Metrics at all Fronts. It is, therefore, noteworthy that Random Forest Regressor was adjudged as most excellent in 

terms of the lowest Mean Squared Error (MSE) by 3.57E-06, which is a good indication of its productiveness. The 

thorough evaluation of Metrics like RMSE, MAE, EVS, and Max Error proves the great resistance of Random 

Forest Regression, which illustrates outliers and performs the external variations in power data analysis. The results 

gained from this study have the highest significance for those who are involved in power company management; 

they can get useful information on what method will be the best for the successful implementation of predictive 

analytics. The Random Forest Regressor was the only model among others that had dominantly demonstrated 

competence, the other models having enough but less than the RF Regressor. This statistically explains that the RF 

Regressor is the best among them all for accurate and reliable power generation predictions. Nevertheless, the 

development of an ultimate framework to meet all the target aspects and limitations is a challenging process. 

 

Funding: “This research received no external funding”  

Conflicts of Interest: “The authors declare no conflict of interest.”  

References 

[1] Almetwally, E. M., & Meraou, M. A. (2022). Application of environmental data with new extension of 

Nadarajah-Haghighi distribution. Computational Journal of Mathematical and Statistical Sciences, 1(1), 

26–41. https://doi.org/10.21608/cjmss.2022.271186 

[2] Muhammed, H. Z., & Almetwally, E. M. (2024). Bayesian and non-Bayesian estimation for the shape 

parameters of new versions of bivariate inverse Weibull distribution based on progressive type II 

censoring. Computational Journal of Mathematical and Statistical Sciences, 3(1), 85–111. 

https://doi.org/10.21608/cjmss.2023.250678.1028 

[3] Towfek, S. K. (2023). Navigating the storm: Cutting-edge risk mitigation and analysis for volatile 

markets. Journal of Artificial Intelligence and Metaheuristics, 4(2), 36–44. 

https://doi.org/10.54216/JAIM.040204 

[4] Towfek, S. K. (2023). A semantic approach for extracting the medical association rules. Journal of 

Artificial Intelligence and Metaheuristics, 5(1), 46–52. https://doi.org/10.54216/JAIM.050105 

https://doi.org/10.54216/JAIM.080201


 
Journal of Artificial Intelligence and Metaheuristics (JAIM)                                    Vol. 08, No. 02, PP. 01-09, 2024 

9 

DOI: https://doi.org/10.54216/JAIM.080201  
Received: March 24, 2024 Revised: May 25, 2024 Accepted: November 01 2024 

 

 

[5] Alotaibi, R., AL-Dayian, G. R., Almetwally, E. M., & Rezk, H. (2024). Bayesian and non-Bayesian two-

sample prediction for the Fréchet distribution under progressive type II censoring. AIP Advances, 14(1), 

015137. https://doi.org/10.1063/5.0174390 

[6] El-Kenawy, E.-S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., & Eid, M. M. et al. (2024). 

Greylag goose optimization: Nature-inspired optimization algorithm. Expert Systems with Applications, 

238, 122147. https://doi.org/10.1016/j.eswa.2023.122147 

[7] El-Kenawy, E.-S., Ibrahim, A., Mirjalili, S., Zhang, Y.-D., & Elnazer, S. et al. (2022). Optimized 

ensemble algorithm for predicting metamaterial antenna parameters. Computers, Materials & Continua, 

71(3), 4989–5003. https://doi.org/10.32604/cmc.2022.023884 

[8] Khafaga, D. S., Ibrahim, A., El-Kenawy, E.-S. M., Abdelhamid, A. A., & Karim, F. K. et al. (2022). An 

Al-Biruni earth radius optimization-based deep convolutional neural network for classifying monkeypox 

disease. Diagnostics, 12(11), Article 11. https://doi.org/10.3390/diagnostics12112892 

[9] Djaafari, A., Ibrahim, A., Bailek, N., Bouchouicha, K., & Hassan, M. A. et al. (2022). Hourly predictions 

of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power 

projects in hyper-arid regions. Energy Reports, 8, 15548–15562. 

https://doi.org/10.1016/j.egyr.2022.10.402 

[10] AlEisa, H., El-Kenawy, E.-S., Alhussan, A., Saber, M., & Abdelhamid, A. et al. (2022). Transfer 

learning for chest X-rays diagnosis using dipper throated algorithm. Computers, Materials & Continua, 

73(2), 2371–2387. https://doi.org/10.32604/cmc.2022.030447 

[11] El-Kenawy, E.-S. M., Khodadadi, N., Mirjalili, S., Makarovskikh, T., & Abotaleb, M. et al. (2022). 

Metaheuristic optimization for improving weed detection in wheat images captured by drones. 

Mathematics, 10(23), Article 23. https://doi.org/10.3390/math10234421 

[12] Abdelhamid, A. A., Towfek, S. K., Khodadadi, N., Alhussan, A. A., & Khafaga, D. S. et al. (2023). 

Waterwheel plant algorithm: A novel metaheuristic optimization method. Processes, 11(5), Article 5. 

https://doi.org/10.3390/pr11051502 

[13] Khafaga, D., El-Kenawy, E.-S., Karim, F., Alshetewi, S., & Ibrahim, A. et al. (2022). Optimized 

weighted ensemble using dipper throated optimization algorithm in metamaterial antenna. Computers, 

Materials & Continua, 73(3), 5771–5788. https://doi.org/10.32604/cmc.2022.032229 

[14] Bhavsar, S., Pitchumani, R., & Ortega-Vazquez, M. A. (2021). Machine learning enabled reduced-order 

scenario generation for stochastic analysis of solar power forecasts. Applied Energy, 293, 116964. 

https://doi.org/10.1016/j.apenergy.2021.116964 

[15] Ding, S., Zhang, H., Tao, Z., & Li, R. (2022). Integrating data decomposition and machine learning 

methods: An empirical proposition and analysis for renewable energy generation forecasting. Expert 

Systems with Applications, 204, 117635. https://doi.org/10.1016/j.eswa.2022.117635 

[16] Mukherjee, D., Chakraborty, S., & Ghosh, S. (2022). Power system state forecasting using machine 

learning techniques. Electrical Engineering, 104(1), 283–305. https://doi.org/10.1007/s00202-021-

01328-z 

[17] Daily power generation data. (2024). Kaggle. Retrieved March 13, 2024, from 

https://www.kaggle.com/datasets/arvindnagaonkar/power-generation-data 

[18] Alam, S., & Yao, N. (2019). The impact of preprocessing steps on the accuracy of machine learning 

algorithms in sentiment analysis. Computational and Mathematical Organization Theory, 25(3), 319–

335. https://doi.org/10.1007/s10588-018-9266-8 

[19] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic 

Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2 

[20] Xue, L., Liu, Y., Xiong, Y., Liu, Y., & Cui, X. et al. (2021). A data-driven shale gas production 

forecasting method based on the multi-objective random forest regression. Journal of Petroleum Science 

and Engineering, 196, 107801. https://doi.org/10.1016/j.petrol.2020.107801 

 

https://doi.org/10.54216/JAIM.080201

