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Abstract 

Cyber-physical systems (CPS) are significant to main organizations like Smart Grids and water conduct and are 

gradually helpless to an extensive range of developing threats. Identifying threats to CPS is of greatest significance, 

owing to their progressive frequent usage in numerous critical assets. Traditional safety devices like firewalls and 

encryption are frequently insufficient for CPS designs; the execution of Intrusion Detection Systems (IDSs) 

personalized for CPS is a crucial plan for safeguarding them. Artificial intelligence (AI) techniques have shown 

abundant probability in numerous areas of network security, mainly in network traffic observation and in the 

recognition of unauthorized access, misuse, or denial of network resources. IDS in CPSs and other fields namely 

the Internet of Things, is regularly considered through deep learning (DL) and machine learning (ML). This 

manuscript offers the design of an Advanced Threat Detection utilizing the Lemurs Optimization Algorithm with 

Deep Learning (ATD-LOADL) methodology in the CPS platform. The primary of the ATD-LOADL methodology 

is to focus on the recognition and classification of cyber threats in CPS. In the preliminary phase, the pre-

processing of the CPS data takes place using a min-max scaler. To select an optimum set of features, the ATD-

LOADL technique uses LOA as a feature selection approach. For threat detection, the ATD-LOADL algorithm 

uses a multi-head attention-based long short-term memory (MHA-LSTM) classifier. At last, the detection results 

of the MHA-LSTM method are boosted by the use of the shuffled frog leap algorithm (SFLA). The 

experimentation outcomes of the ATD-LOADL approach can be widely investigated on a benchmark CPS dataset. 

An experimentation outcome stated the enhanced threat detection results of the ATD-LOADL technique over other 

existing approaches 

Keywords: Cyber-Physical System; Threat Detection; Lemurs Optimization Algorithm; Deep Learning; 

Hyperparameter Tuning 

1. Introduction 

A cyber-physical system (CPS) is the linkage of physical and cyber methods, while the interchange of information 

and data occurs in recent times. CPS plays a vital part in Internet of Things (IoT) based business and provides an 

extensive financial possibility [1]. CPS estimates the contact of network, physical, and computing methods and is 

dependent upon the IoT. It was developed as the cyber internet of physical things that provides a huge sort of 

services like e-health, e-commerce, smart cities, smart homes, etc. A huge amount of industrial tools can be 

organized wirelessly by accepting CPS which aids in handling difficult and huge industrial systems [2]. Interrelated 

modules of CPS have the capability to wisdom environments and procedure the IoT-based substances slightly. It 

has the flexibility to modify the developments in computing [3]. Besides, CPS is enclosed in numerous methods 

and employed in different areas such as transport, military, health care, communication, and several autonomous 

systems. It permits the remote commands and control of devices, machines, and systems that are vital in several 

business environments [4]. However, the wide execution of CPS has many safety threats that cause critical harm 

to organized physical objects and damage the consumers who entirely depend on them. The main safety devices 

to defend CPS gadgets from exterior attacks are trusted in firewalls, encryption, and anti-virus methods [5]. 

However, these devices cannot able to ensure all assaults, particularly by examining that attackers are always 
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developing their tactics. In this situation, utilizing Intrusion Detection Systems (IDSs) is important for identifying 

malicious conduct and shielding the CPSs from attacks [6]. IDSs use Machine Learning (ML) approaches to 

identify malicious actions by trusting training datasets [7]. But, many researchers in the study employ datasets 

gathered from common internet rules. These datasets are not appropriate for IDSs in CPSs, because they have a 

connection with the real present tool and lack traffic from classic protocols of CPS [8].  

Therefore, IDSs must be executed on such methods so that protective activities can be taken earlier when there is 

permanent harm owing to these attacks. To identify attacks as well as accidental faults in CPSs, anomaly detection 

techniques have been developed to diminish these threats [9]. Deep learning (DL) offers better performance than 

traditional ML solutions. In addition, it is also detected that many DL methods have been presented in current 

journals for detecting CPS cyberattacks [10]. An extensively accepted sight to clarify the trouble of discovering 

cyberattacks on CPSs was certified to the complexity level when affixing cybersecurity over CPS. 

This manuscript offers the design of an Advanced Threat Detection using the Lemurs Optimization Algorithm 

with DL (ATD-LOADL) method in the CPS platform. In the preliminary phase, the pre-processing of the CPS 

data takes place using a min-max scaler. To select an optimum set of features, the ATD-LOADL technique uses 

LOA as a feature selection approach. For threat detection, the ATD-LOADL technique uses a multi-head attention-

based long short-term memory (MHA-LSTM) model. Lastly, detection results of the MHA-LSTM method are 

boosted through the usage of the shuffled frog leap algorithm (SFLA). The experimental outcomes of the ATD-

LOADL methodology are widely investigated on benchmark CPS data. 

2. Related works 

Sharma et al. [11] developed a fundamental factor of IDS depending on the significant parameter safety. An 

effective and lightweight DL-based Convolutional Neural Networks (CNNs)-Bidirectional LSTM technique has 

been developed for the DDoS recognition that executes the features CNNs method to categorize traffic movements 

as benign and malicious in this research. Althobaiti et al. [12] project an innovative perceptive computing-based 

IDS method to attain safety in CPS. This technique includes a pre-processed step to eliminate the sound that occurs 

in the data. The binary bacterial foraging optimizer (BBFO) has been used for feature selection (FS). Moreover, 

the gated recurrent unit (GRU) technique has been utilized to classify the intrusions. Lastly, Nesterov-accelerated 

Adaptive Moment Estimation (NADAM) optimization has been utilized as a hyperparameter optimizer of 

the GRU method. 

Ashraf et al. [13] developed an IDS technique for the present network atmosphere by considering the information 

from terrestrial and satellite systems. Integrating ML techniques, the research develops an ensemble method 

RFMLP that incorporates multilayer perceptron (MLP) and random forest (RF) to develop the solution of intrusion 

detection. For examining the efficacy of the projected structure, three dissimilar databases have been utilized. Li 

[14] presents a DL structure for the recognition and analysis of attacks on Photovoltaic (PV) Systems. Wide 

quantitative tests are led by using both micro-PMU and waveform data. Then, an adaptive hierarchical structure 

for the recognition and position of attacks in distribution methods has been offered. Furthermore, models like 

transfer learning (TL) and few-shot learning have been examined for improving the usage of labelled data models. 

Deng et al. [15] proposed an effective attack recognition model by employing a difficult network-based FS and 

DL model, denoted as VFD-AE. Specifically, the technique mines the possible links of features and achieves actual 

FS by assuming the significance estimation model in difficult network theory. Besides, owing to the threat model 

being short in supply, an unsupervised recognition system by Auto encoder (AE) has been planned. Jahromi et al. 

[16] project a dual-level ensemble attack recognition and attribution infrastructure planned for CPS, and more 

exactly in an industrial control system (ICS). In the primary stage, a DT joined by a new ensemble deep 

representation learning approach was proposed to identify threats to imbalanced ICS atmospheres. In the next 

stage, an ensemble of DNNs was intended to simplify threat attribution. 

In [17], the anti-honeypot enabled attack recognition method for ICPS has been proposed by employing the 

Reinforcement learning (RL) and Stakerlberg dynamic game (SDG) techniques. The connections between the 

attackers and ICPS protectors have been arrested via the BSDG method. RL condition and rewards work display 

numerous probable ICPS defence and aggressive attackers. It will seize a threat series in ICPS and classify the 

attackers in an efficient method. Duhayyim et al. [18] proposes an innovative SFSA-DLIDS technique. This 

method chiefly executes a min-max data standardization model for converting input data to a well-suited setup. 

The SFSA approach has been employed to pick a featured sub-set. In addition, a chicken swarm optimizer (CSO) 

with a deep stacked auto-encoder (DSAE) model has been applied to identify and classify the intrusion. 

 

https://doi.org/10.54216/JCIM.150208


 
Journal of Cybersecurity and Information Management (JCIM)                                Vol. 15, No. 02, PP. 87-99, 2025 

89 
DOI: https://doi.org/10.54216/JCIM.150208     
Received: May 04, 2024 Revised: July 08, 2024 Accepted: October 21, 2024 

 

3. The Proposed Method 

In this manuscript, we offer the design of an ATD-LOADL methodology in the CPS platform. The purpose of the 

ATD-LOADL model concentrated on the detection and recognition of cyber threats in the CPS environment. Fig. 

1 shows the workflow of ATD-LOADL methodology. 

 

Figure 1. Workflow of ATD-LOADL methodology 

A. Data normalization 

In the preliminary phase, the pre-processing of the CPS data takes place using a min-max scaler. Min-max scaling, 

also called min-max normalization or feature scaling, is a data pre-processed method normally employed in ML 

and statistics [19]. The main intention of min-max scaling is to convert the numeric values of a dataset into an 

exact range, naturally [0, 1], while conserving the relative changes among the original values. This is attained by 

deducting the minimal value of the feature from every data point and then separating the outcome by the range 

(the difference between the maximal and minimal values). The formulation for min-max scaling is: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

                                                    (1) 

Here, 𝑋  represents the original value, Xmin indicates the minimal value in the dataset, and Xmaxrefers to the 

maximal value. Min-max scaling is chiefly beneficial when features in a dataset have dissimilar scales, averting 

certain features from extremely influencing the learning procedure. It is an easy and effective method to regularize 

data, certifying that all features donate similarly to the model's training procedure and enhancing the values and 

convergence of numerous ML techniques. 

B. LOA-based feature selection 

At this stage, the ATD-LOADL technique uses LOA as a feature selection approach. LO is a great population‐

based technique, thus the lemur set is given in the matrix method [20]. Eq. (2) determines the input population 

matrix for LO model.  
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2 ∙ 𝑙𝑛
𝑑]
 
 
 

                                                       (2) 

Where the matrix of size 𝑛 × 𝑑 indicates 𝑋. The candidate solutions point to 𝑛, and the dimension represents 𝑑. 

The LO is used for resolving optimization problems such as Feature selection (FS), the steps of the LO technique 

are given below: 

Step1: Determine the succeeding Lemur parameters: 𝑁 Population, Max𝑖𝑡𝑒𝑟  represents the maximal iteration 

number. The dimension of the search range over the dataset size is represented as 𝑑. In addition, 𝑈𝐵 and 𝐿𝐵 are 

the up-and-low limitations of the problems. 

Step2: Generate 𝑋 decision variables at an 𝑖𝑡ℎ solution using the following expression: 

𝑋𝑖
𝑗
= (𝐿𝐵 + (𝑈𝐵𝑗 − 𝐿𝐵𝑗)) × 𝑟                                      (3) 

Here 𝑟 denotes the uniform distribution random value ∈ [0, 1]. 

Step3: Evaluate the Free Risk Rate (𝐹𝑅𝑅) which is the co-efficient of LO within the loop for every iteration: 

𝐹𝑅𝑅 = 𝐻𝑅𝑅 − 𝑡 × ((𝐻𝑅𝑅 − 𝐿𝑅𝑅)/Max𝑖𝑡𝑒𝑟                           (4) 

In Eq. (4), the existing number of iterations is denoted as 𝑓. Max𝑖𝑡𝑒𝑟  indicates the iteration size. Low-Risk Rate 

(𝐿𝑅𝑅) and High-Risk Rate (𝐻𝑅𝑅) are the binary predetermined and constant values. 

Step4: for each 𝜒𝑗𝑖, evaluate the fitness values as follows: 

𝐹𝑖𝑡(𝑥𝑖
𝑗
) = 𝛼 × (1 − 𝐴𝑐𝑐) + 𝛽 × (𝑠/𝑆)                                   (5) 

In Eq. (5), 𝐹𝑖𝑡(𝑥𝑖
𝑗
) denotes the fitness value, small 𝑠, and 𝑆 is the overall and maximum amount of features 

nominated, and 𝐴𝑐𝑐 refers to the accurateness of the subset extracted by 𝑡ℎ𝑒 𝐾𝑁𝑁 classifier to calculate the subset 

selected in all the iterations. 

Step 5: it is classified into two processes to enhance the fitness value of lemurs. At first, the best near lemurs (𝑏𝑛𝑙) 

have been defined which suggests choosing the solution with the lowest fitness value. 𝑏𝑛𝑙 provides the superior 

feature for the current iteration based on the FS objective. Next, the global best lemur (𝑔𝑏𝑙) is nominated in the 

overall population, which signifies the overall best solution. 

Step6: Fix the random number value 𝑟1 ∈ [0,1], and equate it by 𝐹𝑅𝑅. Next, the position is upgraded for all the 

lemurs away from the risk-based model. 

𝑋𝑖
𝑗
= {

𝑥(𝑖, 𝑗) + |(𝑥(𝑖, 𝑗) − 𝑥(𝑏𝑛𝑙, 𝑗)| × (𝑟3 − 0.5) × 2; 𝑟1 < 𝐹𝑅𝑅
𝑥(𝑖, 𝑗) + |(𝑥(𝑖, 𝑗) − 𝑥(𝑔𝑏𝑙, 𝑗)| × (𝑟3 − 0.5) × 2; 𝑟1 > 𝐹𝑅𝑅

           (6) 

In Eq. (6), 𝑟1 denotes the arbitrary value ∈ [0,1]. The existing 𝑖𝑡ℎ lemurs of 𝑁𝑡ℎ the population is (𝑖, 𝑗) which has 

been the candidate solution in 𝑗𝑡ℎ dimension. 𝑔𝑏𝑙 refers to the global optimal lemur for the entire population at all 

iterations.  

The fitness function (FF) replicates the classification accuracy and the amount of nominated features. It enlarges 

the exactness of classification and decreases the dimension of the nominated features. So, FF is applied to assess 

individual solutions, as shown in below Eq. (7). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ∗
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
                                     (7) 

Where ErrorRate means the rate of error of classification applying the designated features. 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 Can be 

proposed as the ratio of improper categorized to the classification count arranged, transferred as a value between 

(0, 1). (Error Rate was the supplement of the accuracy of classification), #𝑆𝐹 is the nominated features amount 

and #𝐴𝑙𝑙_𝐹 refers to the complete volume of feature in a unique database. 𝛼 is employed to handle the importance 

of classifier superiority and sub-set length. 𝛼 are agreed to 0.9 in our examinations. 

C. Detection using MHA-LSTM model 

For threat recognition, the ATD-LOADL technique uses the MHA-LSTM methodology. LSTM is a kind of 

Recurrent Neural Network (RNN) that is proposed for tackling the gradient vanishing problems that occur while 

training classical RNN [21]. Sepp Hochreiter and Jürgen Schmidhuber in 1997 introduced LSTM which has gained 
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popularity for many tasks including sequence data, such as recognition of speech, time series study, and Natural 

Language Processing (NLP). 

At the core of LSTM are memory cells that could retain data over longer sequences, enabling them to capture 

relationships and dependencies in the input dataset. Every memory cell has three major elements: 

Cell State (𝐶𝑡): This determines the long‐term memory of LSTM and also carries data from the previous time step-

in. 

Input Gate (i): This represents what data from the existing time step is to be kept in cell state 𝐶𝑡 . 

Forget Gate (f): This controls what data from the prior cell state to be discarded or forgotten. 

Output Gate (0): This defines what amount of 𝐶𝑡 is to be disclosed as the output. 

 

Figure 2. LSTM structure 

Fig. 2 depicts the architecture of LSTM. The LSTM processes the input sequence step-wise, which updates the 

cell state and produces an output at the time step. The main concept behind LSTM is the usage of the above gates 

to regulate the data flow and employed as a sigmoid neural network layer that generates value within the range [0, 

1]. 

In the forward pass of LSTM, the gate was calculated according to the present input, prior output, and prior 𝐶𝑡: 

Input Gate (i): 

𝑖[𝑡] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖ℎ[𝑡] + 𝑊𝑖ℎ[ℎ[𝑡 − 1]] + 𝑏𝑖                                   (8) 

Forget Gate (f): 

𝑓[𝑡] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥[𝑡] + 𝑊𝑓ℎ[ℎ[𝑡 − 1]] + 𝑏𝑓                             (9) 

Output Gate (0): 

𝑜[𝑡] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥[𝑡] + 𝑊𝑜ℎ[ℎ[𝑡 − 1]] + 𝑏𝑜                              (10) 

The input, forget, and output gates calculate the updated 𝐶𝑡 and output at 𝑡 time step: 

Cell state update: 

𝐶[𝑡] = 𝑓[𝑡] ∗ 𝐶[𝑡 − 1] + 𝑖[𝑡] ∗ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥[𝑡] + 𝑊𝑐ℎ[ℎ[𝑡 − 1]] + 𝑏𝑐        (11) 

Output: 

ℎ[𝑡] = 0[𝑡] ∗ tanh(𝐶[𝑡])                                          (12) 

Where the input at 𝑡ℎ𝑒 𝑡 time step is 𝑥[𝑡], the output of the prior time step is ℎ[𝑡 − 1], and the weight matrix and 

bias vectors of the algorithm are 𝑊 and 𝑏. LSTM could learn and recall long‐term dependency in data sequence 

by selectively forgetting and updating data through the gate. Especially, this makes them well-suited for activities 

with temporal and context requirements. Backpropagation through Time (BPTT) is a backpropagation 

development that considers the successive properties of data while training LSTMs.  
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LSTM has shown to be effective in processing and modelling data sequences, and is often used in a variety of 

applications where capturing and understanding long‐term dependencies are crucial. MHA-LSTM integrates the 

successive modelling abilities of Long Short-Term Memory (LSTM) systems with the attention device resultant 

from transformers. This hybrid technique influences the capability of LSTMs to capture sequential dependencies 

in sequential data and improves it by presenting multi-head attention, permitting the system to instantaneously 

attend to dissimilar portions of the input sequence. By using this fusion, MHA-LSTM's main goal is to capture 

both short-term and long-term dependences more efficiently, providing enhanced performance in tasks that need 

nuanced accepting of consecutive designs. 

D. Hyperparameter tuning using SFLA model 

Eventually, the detection performances of the MHA-LSTM model can be boosted by the use of SFLA. SFLA is a 

novel population-based metaheuristic optimizer model that reproduces the memetic development of frog groups 

when observing a residence with a maximal quantity of obtainable food [22]. SFLA consists of definite as well as 

random plans for discovering an optimum response. The definite plan permits the method to employ surface‐level 

data proficiently to guide the heuristic hunt. Accidental elements manage flexibility and control search design in 

this developed model. In this technique, every frog is measured as the best answer to the issue and a group of frogs 

creates a populace that transfers to grasp an exact goal. At the time of reaching the process, the population is 

separated into many sub-sets. The properties of frogs in every sub-group adjust result variables. After a definite 

quantity of evolutions, data is transferred among frogs during the procedure of merging sub-sets and generating 

novel populations and then a directed hunt is performed to define an optimum solution. This style endures until 

definite convergence situations develop. 

In SFLA, an original populace of 𝑠𝑓𝑙𝑎−𝑝 frogs are arbitrarily created from probable solutions. The place or 

condition of the frog is a probable answer to the issue. This frog is then applied by paths and assemblies to specify 

values or problematic answers. In this technique, a whole early population is 1st separated into 𝑠𝑓𝑙𝑎−𝑚 clusters 

termed memplex. Various memplexes have 𝑠𝑓𝑙𝑎−𝑛 of a group of frogs that separately penetrates for an answer in 

hunt space. In every memplex, a sub-memplex is formed to prevent dropping in a local target. Each sub-memplex 

contains 𝑠𝑓𝑙𝑎−𝑞 frogs as well as nominated arbitrarily that depend on probability function which mentioned below: 

𝑃𝑗 =
2(𝑠𝑓𝑙𝑎−𝑛 + 1 − 𝑗)

𝑠𝑓𝑙𝑎−𝑛(𝑠𝑓𝑙𝑎−𝑛 + 1)
, 𝑗 = 1,2, … , 𝑠𝑓𝑙𝑎−𝑛           (13) 

Whereas 𝑃𝑗 denotes the probability of selecting 𝑡ℎ𝑒 𝑗th frog for range and 𝑠𝑓𝑙𝑎−𝑛 signifies the number of frogs in 

memplex. In every memplex, frogs are organized as per a descendant sequence of fitness, where the possibility of 

choosing frogs is dropped. So, better-placed frogs in search space have a better opportunity of selecting an 

associate of sub-memplex. In every sub-memplex, the worst frog(𝑃𝑤), executes diving depending on its individual 

skills and the location of the best frog (𝑃𝑏). Then, the worst frog was nominated from the sub-memplex. The diving 

stage dimension for frog 𝑃𝑤 is given below: 

𝑆𝐵 = {
 min{𝑖𝑛𝑡(𝑟𝑎𝑛𝑑. [𝑃𝑏 − 𝑃𝑤]). 𝑆max}𝑓𝑜𝑟𝑎𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑡𝑒𝑝

 max{𝑖𝑛𝑡(𝑟𝑎𝑛𝑑. [𝑃𝑏 − 𝑃𝑤]). −𝑆max}𝑓𝑜𝑟𝑎𝑛𝑎𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑡𝑒𝑝
           (14) 

Whereas, 𝑟𝑎𝑛𝑑 denotes an arbitrary amount from the interval of zero and one; 𝑆− max is said to be the maximal 

dive length. In a subsequent stage, the worst frog place is revised as follows: 

𝑃𝑤
′ = 𝑃𝑤 + 𝑆𝐵                                                        (15) 

If the novel Frog (𝑃𝑤
′ ) is enhanced than a new frog, then it is substituted by the original or else 𝑃𝑤 is modified 

affording an optimum frog of total population (p) which is mentioned below: 

𝑆𝐺 = {
 min{𝑖𝑛𝑡(𝑟𝑎𝑛𝑑. [𝑃𝐺 − 𝑃𝑤]). 𝑆max}𝑓𝑜𝑟 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑡𝑒𝑝

 max{𝑖𝑛𝑡(𝑟𝑎𝑛𝑑. [𝑃𝐺 − 𝑃𝑤]). −𝑆max }𝑓𝑜𝑟 𝑎 𝑛𝑎𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑡𝑒𝑝
           (16) 

𝑃𝑤
′′ = 𝑃𝑤 + 𝑆𝐺                                                 (17) 

Related to the preceding one, if 𝑃𝑤
′′ frog is superior to the original frog (𝑃𝑤), it is switched with 𝑃𝑤

′′ frog and if 

either of those is confident, a novel frog at random is swapped with the poorest of sub-memplex. When the 𝐼𝑇𝑚𝑒𝑚  

stages of separating memplex into sub-memplexes, again all frogs united and 𝑟𝑒‐separated into 𝑠𝑓𝑙𝑎−𝑚 

memeplexes. This process continues to happen in program situations. By adopting this operation, the steadily usual 

fitness of the frog populace rises at the time of evolutionary phases and joins to a definite degree. With esteem to 

this procedure, 𝑃𝐺  and 𝑃𝑤 transformed to every iteration and the fitness variable was enhanced to unite the preferred 

answer. The SFLA model originates an FF to reach an upgraded classification solution. It determines an optimistic 
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number to suggest the higher values of the candidate results. In this study, the classification rate of error 

diminishing is reflected as FF, as provided in Eq. (18).    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.  𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
∗ 100                  (18) 

4. Experimental validation 

This section validates the experimental analysis of the ATD-LOADL system under two datasets: NSLKDD2015 

and CICIDS2017 datasets. Table 1 exemplifies the detailed description of 2 databases.  

Table 1: Details on datasets 

Classes 
Datasets 

NSLKDD2015 CICIDS2017 

Normal 67343 25000 

Anomaly 58630 25000 

Total Instances 125973 50000 

 

Figure 3. Confusion matrices of ATD-LOADL under 80%:20% TRAPS/TESPS (a-b) NSLKDD2015 and (c-d) 

CICIDS2017 datasets 

Fig. 3 shows the confusion matrices acquired by the ATD-LOADL methodology under NSLKDD2015 and 

CICIDS2017 datasets. The accomplished result displays the adept recognition of normal and anomaly samples 

with all class labels. 

The detection outcomes of the ATD-LOADL method under the NSLKDD2015 database are reported in Table 2 

and Fig. 4. These obtained outcome demonstrate the ATD-LOADL method reaches effective identification of the 

normal and anomaly classes. Based on 80% of TRAPS, the ATD-LOADL methodology obtained an average 

𝑎𝑐𝑐𝑢𝑦 of 99.35%, 𝑝𝑟𝑒𝑐𝑛 of 99.34%, 𝑟𝑒𝑐𝑎𝑙 of 99.35%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.35%, and MCC of 98.69%. Additionally, based 

on 20% of TESPS, the ATD-LOADL model provides an average 𝑎𝑐𝑐𝑢𝑦 of 99.36%, 𝑝𝑟𝑒𝑐𝑛 of 99.35%, 𝑟𝑒𝑐𝑎𝑙 of 

99.36%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.35%, and MCC of 98.71%, respectively. 
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Table 2: Detection outcomes of the ATD-LOADL system under the NSLKDD2015 dataset 

NSLKDD2015 Database 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

80% of TRAPS 

Normal 99.33 99.45 99.33 99.39 98.69 

Anomaly 99.37 99.23 99.37 99.30 98.69 

Average 99.35 99.34 99.35 99.35 98.69 

20% of TESPS 

Normal 99.32 99.48 99.32 99.40 98.71 

Anomaly 99.40 99.22 99.40 99.31 98.71 

Average 99.36 99.35 99.36 99.35 98.71 

 

Figure 4. Average outcome of ATD-LOADL algorithm under NSLKDD2015 dataset 

The 𝑎𝑐𝑐𝑢𝑦 the curve for training (TR) and validation (VL) illustrated in Fig. 5 for the ATD-LOADL method at 

the NSLKDD2015 database provides an esteemed understanding of its efficiency in assorted epoch counts. 

Generally, it is a constant advancement at either TR or TS 𝑎𝑐𝑐𝑢𝑦 with rising epoch counts, representing the 

efficiency of the technique in recognizing and learning patterns at both TS and TR data. The growing tendency in 

TS 𝑎𝑐𝑐𝑢𝑦 highlights the model's flexibility for the TR database and its capacity for generating correct forecasts on 

unnoticed data, emphasizing proficiencies of strong generalizability. 

 

Figure 5. 𝐴𝑐𝑐𝑢𝑦 curve of the ATD-LOADL algorithm on the NSLKDD2015 dataset 
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Fig. 6 demonstrates a wide-ranging summary of the TS and TR loss for the ATD-LOADL methodology through 

the NSLKDD2015 data in varied epoch counts. The TR loss reliably diminutions as the method improves weights 

for decreasing classifier errors under 2 data. The loss investigation establishes the model's arrangement with the 

TR data, emphasizing its capability for excellently capturing patterns. Important can be a constant refinement of 

parameters in the ATD-LOADL approach, targeted at minimizing differences amongst predictions and real TR 

classes. 

 

Figure 6. Loss curve of the ATD-LOADL technique under NSLKDD2015 dataset 

The recognition study of the ATD-LOADL technique at the CICIDS2017 database is illustrated in Table 3 and 

Fig. 7. These experimental values display the ATD-LOADL methodology acquires effective identification with 

two classes. On 80% of TRAPS, the ATD-LOADL method offers an average 𝑎𝑐𝑐𝑢𝑦 of 99.55%, 𝑝𝑟𝑒𝑐𝑛 of 99.56%, 

𝑟𝑒𝑐𝑎𝑙 of 99.55%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.55%, and MCC of 99.11%. Also, with 20% of TESPS, the ATD-LOADL method 

gained an average 𝑎𝑐𝑐𝑢𝑦 of 99.63%, 𝑝𝑟𝑒𝑐𝑛 of 99.63%, 𝑟𝑒𝑐𝑎𝑙 of 99.63%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.63%, and MCC of 99.26%, 

correspondingly. 

Table 3: Detection of the ATD-LOADL methodology under the CICIDS2017 dataset 

CICIDS2017 Database 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

805 of TRAPS  

Normal 99.52 99.58 99.52 99.55 99.11 

Anomaly 99.59 99.53 99.59 99.56 99.11 

Average 99.55 99.56 99.55 99.55 99.11 

20% of TESPS  

Normal 99.64 99.62 99.64 99.63 99.26 

Anomaly 99.62 99.64 99.62 99.63 99.26 

Average 99.63 99.63 99.63 99.63 99.26 

The 𝑎𝑐𝑐𝑢𝑦 curves for VL and TR revealed in Fig. 8 for the ATD-LOADL methodology on the CICIDS2017 

database provide a valued understanding of its efficacy in numerous epoch counts. Principally, it is a steady 

advancement at both TS and TR 𝑎𝑐𝑐𝑢𝑦 with amplified epoch counts, suggesting the abilities of the method for 

identifying and learning patterns at these both data. The rising tendency in TS 𝑎𝑐𝑐𝑢𝑦 emphasizes the model's 

adaptability for the database of TR and abilities to generate exact forecasts on hidden data, underscoring abilities 

of strong generalizability. 

Fig. 9 illustrates a wide-ranging outline of the TS and TR loss of the ATD-LOADL algorithm on the CICIDS2017 

database over several epoch counts. The TR loss steadily decreases as a model upgrade weight for diminishing 

classifier errors. These loss curves show the model's position through the data of TR, emphasizing its abilities for 

successfully capturing patterns. Noteworthy can be a nonstop development of parameters in the ATD-LOADL 

model, pointed at lessening discrepancies among actual and predicted TR classes. 
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Figure 7. Average outcome of ATD-LOADL model under the CICIDS2017 dataset 

 

Figure 8. 𝐴𝑐𝑐𝑢𝑦 Curve of the ATD-LOADL model under the CICIDS2017 dataset 

 

Figure 9. Loss curve of the ATD-LOADL technique with the CICIDS2017 dataset 
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The comparative results of the ATD-LOADL algorithm are defined in Table 4 and Fig. 10 [23]. The gained values 

stated that the OT method reaches worse results whereas the RF approach has resulted in somewhat higher 

performance. Moreover, the ATM-MFTDS, DBN, LSTM, and RNN systems gain reasonable results. Although 

the QDMOED-LTD model illustrates reasonable performance, the ATD-LOADL technique exhibits superior 

results with increased 𝑎𝑐𝑐𝑢𝑦 of 99.63%, 𝑝𝑟𝑒𝑐𝑛 of 99.63%, 𝑟𝑒𝑐𝑎𝑙 of 99.63%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.63%. 

Table 4: Comparison outcome of the ATD-LOADL methodology with other algorithms 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

ATD-LOADL 99.63 99.63 99.63 99.63 

QDMOED-LTD 99.52 99.52 99.52 99.52 

ATM-MFTDS 98.72 99.27 99.09 99.08 

DBN  98.59 98.77 98.33 98.25 

LSTM  98.40 98.55 98.20 98.16 

RNN  98.74 97.78 98.44 98.09 

OT  93.84 95.93 92.54 95.48 

RF  96.03 97.65 93.49 96.01 

 

Figure 10. Comparison analysis of the ATD-LOADL model with other techniques 

The computation complexity of the ATD-LOADL algorithm with recent models is measured concerning training 

time (TRT) and testing time (TST) in Table 5 and Fig. 11. The accomplished findings suggest that the AIMMF-

IDS approach, DBN system, LSTM algorithm, RNN model, DT approach, and RF methodology demonstrate 

boosted and closer TRT and TST values. Meanwhile, the QDMO-EDLID model exhibits reasonable TRT and TST 

values of 0.80s and 0.54s. However, the ATD-LOADL technique demonstrates maximum performance with 

decreased TRT and TST of 0.31s and 0.19s, correspondingly. Thus, the simulation analysis ensured that the ATD-

LOADL technique provides enhanced threat detection results.  

Table 5: Computation complexity of the ATD-LOADL system with other methods 

Methods TRT (sec) TST (sec) 

ATD-LOADL 0.31 0.19 

QDMO-EDLID 0.80 0.54 

AIMMF-IDS 1.10 0.57 

DBN 1.21 0.74 
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LSTM 1.31 0.72 

RNN 1.31 0.75 

DT  1.59 0.95 

RF  1.60 1.00 

 

Figure 11. Computation complexity of the ATD-LOADL model with other methods 

5. Conclusion 

In this manuscript, we offer the design of an ATD-LOADL model in CPS. The main purpose of the ATD-LOADL 

methodology is to concentrate on the recognition and classification of cyber threats in the CPS. Initially, the pre-

processing of the CPS data takes place using a min-max scaler. To select an optimum set of features, the ATD-

LOADL technique uses LOA as a feature selection approach. For threat detection, the ATD-LOADL technique 

uses the MHA-LSTM classifier. At last, the detection outcomes of the MHA-LSTM methodology can be boosted 

by the use of SFLA. The experimentation outcomes of the ATD-LOADL method can be widely investigated on a 

benchmark CPS dataset. The experimentation outcomes stated the enhanced threat detection results of the ATD-

LOADL technique over other existing approaches. 
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