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Abstract

The study of geometric properties within the subclass of analytic functions has garnered significant attention
in recent years due to its complex and intricate interplay between geometric function theory and complex
analysis. This area of study provides deep insights into both mathematical theory and its practical applications.
The exploration of these properties is not only of theoretical interest but also offers valuable implications for
various applications in mathematical and engineering disciplines. In particular, this paper focuses on a detailed
examination of the inclusion, neighborhood, and partial sums properties within a broad and general subclass of
analytic functions. This class of functions is defined through a generalized multiplier transformation operator,
which adds a layer of complexity to their analysis. By investigating these specific properties, this study aims
to validate and build upon many existing findings documented in the literature, offering new perspectives and
contributing to a deeper understanding of the field.
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1 Introduction

Let A represent the set of analytic functions f defined on the open unit disk U, which are normalized by the
conditions fp0q “ 0 and f 1p0q “ 1. Consequently, every function f P A can be expressed as a Taylor-
Maclaurin series of the form:

fpυq “ υ `

8
ÿ

κ“2

aκυ
κ, υ P U. (1)

In 1975, Silverman1 introduced and analyzed a specific subset of A comprised of functions where the coeffi-
cients, starting from the second term, are negative. In other words, the analytic functions f within this subset
can be represented as

fpυq “ υ ´

8
ÿ

κ“2

aκυ
κ, υ P U. an ě 0 (2)
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This subclass is known as the class of analytic functions with negative coefficients and is denoted as A˚. Fol-
lowing Silverman’s contribution, there has been considerable interest in studying functions with negative co-
efficients. Building on Silverman’s work, many additional subclasses of A have been investigated in academic
literature. For functions f P A, Cho and Srivastava2 introduced the generalized multiplier transformation
operator as follows:

Imψ fpυq “ υ `

8
ÿ

κ“2

ˆ

κ` ψ

1 ` ψ

˙m

aκυ
κ, pm P N0 “ N Y t0u and ψ ě 0q. (3)

It is worth noting that for ψ “ 1, the multiplier transformation Imψ was introduced and examined by Urale-
gaddi and Somanatha,3 whereas for ψ “ 0, the multiplier transformation Imψ was introduced and analyzed by
Salagean.4

Yousef et al. in5 initially introduced the class BµΣpφ, δ, αq. In subsequent work,6 Illafe et al. incorporated
the operator Imψ fpυq to define a new subclass, B˚

m,ψpφ, δ, αq, and established the necessary and sufficient
conditions for a function fpυq to belong to this subclass B˚

m,ψpφ, δ, αq, as outlined in the following definition
and theorem. For more work related to the class BµΣpφ, δ, αq, we refer the reader to7-.23

Definition 1.1. For φ ě 1, δ ě 0 and 0 ď α ă 1, an analytic function f represented by p1q is in B˚
m,ψpφ, δ, αq

if for all υ P U.

Re

"

p1 ´ φq
Imψ fpυq

υ
` φpImψ fpυqq1 ` δυpImψ fpυqq2

*

ą α. (4)

Theorem 1.2. A function f P A˚ defined by p2q belong to the class B˚
m,ψpφ, δ, αq if and only if

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m

aκ ď 1 ´ α. (5)

2 Inclusion Relations

This section investigates the inclusion properties of the subclass B˚
m,ψpφ, δ, αq. By examining various inclu-

sion relations, we aim to understand how different subclasses relate to each other within this framework. The
results presented offer insights into how certain classes are contained within others, contributing to a broader
understanding of the hierarchical structure within the class of analytic functions under consideration.

Theorem 2.1. let 0 ď α1 ď α2 ă 1. Then

B˚
m,ψ pφ, δ, α1q Ě B˚

m,ψ pφ, δ, α2q . (6)

Proof. Consider the function fpυq defined by equation (2) to belong to the class B˚
m,ψ pφ, δ, α2q. Then, by

Theorem 1.2, we have

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m

aκ ď 1 ´ α2

ď 1 ´ α1.

Thus, f P B˚
m,ψ pφ, δ, α1q.

Therefore, the inclusion relation shown by (6) holds.

Theorem 2.2. let 1 ď φ1 ď φ2. Then

B˚
m,ψ pφ1, δ, αq Ě B˚

m,ψ pφ2, δ, αq . (7)

DOI: https://doi.org/10.54216/IJNS.250341
Received: March 29, 2024 Revised: June 28, 2024 Accepted: November 10, 2024

502



International Journal of Neutrosophic Science (IJNS) Vol. 25, No. 03, PP. 501-510, 2025

Proof. Consider the function fpυq defined by equation (2) to belong to the class B˚
m,ψ pφ2, δ, αq. Then, by

Theorem 1.2, we have

8
ÿ

κ“2

rp1 ´ φ1q ` κφ1 ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m

aκ ď

8
ÿ

κ“2

rp1 ´ φ2q ` κφ2 ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m

aκ

ď 1 ´ α.

Thus, f P B˚
m,ψ pφ1, δ, αq.

Therefore, the inclusion relation shown by (7) holds.

Theorem 2.3. let 0 ď δ1 ď δ2. Then

B˚
m,ψ pφ, δ1, αq Ě B˚

m,ψ pφ, δ2, αq . (8)

Proof. Consider the function fpυq defined by equation (2) to belong to the class B˚
m,δ pφ, δ2, αq. Then, by

Theorem 1.2, we have

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδ1s

ˆ

κ` ψ

1 ` ψ

˙m

aκ ď

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδ2s

ˆ

κ` ψ

1 ` ψ

˙m

aκ

ď 1 ´ α.

Thus, f P B˚
m,ψ pφ, δ1, αq.

Therefore, the inclusion relation shown by (8) holds.

Theorem 2.4. let 0 ď m1 ď m2. Then

B˚
m1,ψ

pφ, δ, αq Ě B˚
m2,ψ

pφ, δ, αq . (9)

Proof. Consider the function fpυq defined by equation (2) to belong to the class B˚
m2,δ

pφ, δ, αq. Then, by
Theorem 1.2, we have

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m1

aκ ď

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m2

aκ

ď 1 ´ α.

Thus, f P B˚
m1,δ

pφ, δ, αq.

Therefore, the inclusion relation shown by (9) holds.

Theorem 2.5. let 0 ď ψ1 ď ψ2. Then

B˚
m,ψ1

pφ, δ, αq Ě B˚
m,ψ2

pφ, δ, αq . (10)

Proof. Consider the function fpυq defined by equation (2) to belong to the class B˚
m,ψ2

pφ, δ, αq. Then, by
Theorem 1.2, we have

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ1

1 ` ψ1

˙m

aκ ď

8
ÿ

κ“2

rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ2

1 ` ψ2

˙m

aκ

ď 1 ´ α.

Thus, f P B˚
m,ψ1

pφ, δ, αq.

Therefore, the inclusion relation shown by (10) holds.
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3 Neighborhoods

In the study of analytic functions, neighborhoods play a crucial role in understanding the behavior of functions
within certain bounds. Specifically, this section explores neighborhoods defined around a given function f in
terms of the coefficients of its series expansion.

Consider the neighborhood Nεpfq defined by

Nεpfq “

#

g P A˚ : gpυq “ υ ´

8
ÿ

κ“2

bκυ
κ and

8
ÿ

κ“2

κ |aκ ´ bκ| ď ε

+

.

Here, A˚ denote the class of analytic functions with negative coefficients, and aκ and bκ are the positive
coefficients of the series expansion of f and g, respectively.

For the identity function epυq “ υ, the neighborhood is given by

Nεpeq “

#

g P A˚ : gpυq “ υ ´

8
ÿ

κ“2

bκυ
κ and

8
ÿ

κ“2

κbκ ď ε

+

.

This section will investigate the neighborhood property, focusing on Nεpeq, and will prove several important
results concerning the relationship between different function classes and their neighborhoods.

Theorem 3.1. If φ ě 2δ ` 1 and ε “
2p1´αq

p1`φ`2δqp 2`ψ
1`ψ q

m , then B˚
m,ψpφ, δ, αq Ă Nεpeq.

Proof. Let fpυq P B˚
m,ψpφ, δ, αq. Then, by Theorem 1.2, we have

p1 ` φ` 2δq

ˆ

2 ` ψ

1 ` ψ

˙m 8
ÿ

κ“2

aκ ď 1 ´ α,

which implies
8
ÿ

κ“2

aκ ď
1 ´ α

p1 ` φ` 2δq

´

2`ψ
1`ψ

¯m (11)

Now, from (5) and (11) we have

φ

ˆ

2 ` ψ

1 ` ψ

˙m 8
ÿ

κ“2

naκ ď 1 ´ α ´ p1 ´ φ` 2δq

ˆ

2 ` ψ

1 ` ψ

˙m 8
ÿ

κ“2

aκ (12)

ď 1 ´ α ´
p1 ´ αqp1 ´ φ` 2δq

1 ` φ` 2δ
.

Hence,
8
ÿ

κ“2

κaκ ď
2p1 ´ αq

p1 ` φ` 2δq

´

2`ψ
1`ψ

¯m “ ε,

and fpυq P Nεpeq.

A function f P A˚ is said to be in the subclass B˚
m,ψpφ, δ, αq if there exists a function g P B˚

m,ψpφ, δ, αq such
that

ˇ

ˇ

ˇ

ˇ

fpυq

gpυq
´ 1

ˇ

ˇ

ˇ

ˇ

ď 1 ´ β, p0 ď β ă 1, υ P Uq.
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Theorem 3.2. If g P B˚
m,ψpφ, δ, αq and

β “ 1 ´

εp1 ` φ` 2δq

´

2`ψ
1`ψ

¯m

2
´

p1 ` φ` 2δq

´

2`ψ
1`ψ

¯m

` α ´ 1
¯ ,

then Nεpgq Ă B˚
m,ψpφ, δ, αq.

Proof. Let fpυq P Nεpgq. Then
8
ÿ

κ“2

κ |aκ ´ bκ| ď ε ñ

8
ÿ

κ“2

|aκ ´ bκ| ď
ε

2
.

Since g P B˚
m,ψpφ, δ, αq, then

8
ÿ

κ“2

bκ ď
1 ´ α

p1 ` φ` 2δq

´

2`ψ
1`ψ

¯m .

Letting |υ| Ñ 1, we have
ˇ

ˇ

ˇ

ˇ

fpυq

gpυq
´ 1

ˇ

ˇ

ˇ

ˇ

ď

ř8

κ“2 |aκ ´ bκ|

1 ´
ř8

κ“2 bκ
(13)

ď
ε

2

¨

˝

p1 ` φ` 2δq

´

2`ψ
1`ψ

¯m

p1 ` φ` 2δq

´

2`ψ
1`ψ

¯m

` α ´ 1

˛

‚

ď 1 ´ β,

Thus, f P B˚
m,ψpφ, δ, αq.

4 Partial Sums

Silverman24 sharp bounds on the real part of the ratios between normalized convex or starlike functions and
their corresponding partial sum sequences. In this section, we build upon Silverman’s work24 and the studies
mentioned in25 concerning partial sums of the analytic functions to examine the proportion of real parts of a
function of the form (2) and its corresponding partial sum sequences, which is defined by:

fN pυq “ υ ´

N
ÿ

κ“2

aκυ
κ, N P Nzt1u and aκ ě 0. (14)

Let

Ξmκ “ Ξmκ pφ, δ, ψq :“ rp1 ´ φq ` κφ` κpκ´ 1qδs

ˆ

κ` ψ

1 ` ψ

˙m

,

where m P N0, φ ě 1, δ ě 0 and ψ ě 0.

Theorem 4.1. If f P A˚ in the form of equation (2) satisfies the condition (5), then

Re
"

fpυq

fN pυq

*

ě
ΞmN`1 ` α ´ 1

ΞmN`1

, (15)

and

Re
"

fN pυq

fpυq

*

ě
ΞmN`1

ΞmN`1 ´ α ` 1
. (16)

The results are sharp for every N P Nzt1u, with the extremal functions given by

fpυq “ υ ´
1 ´ α

ΞmN`1

υN`1. (17)
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Proof. To prove (15), it is sufficient to prove that

ΞmN`1

1 ´ α

ˆ

fpυq

fN pυq
´

ΞmN`1 ` α ´ 1

ΞmN`1

˙

ă
1 ` υ

1 ´ υ
, pυ P Uq.

Define the function ωpυq by

ΞmN`1

1 ´ α

˜

1 ´
ř8

κ“2 aκυ
κ´1

1 ´
řN
κ“2 aκυ

κ´1
´

ΞmN`1 ` α ´ 1

ΞmN`1

¸

“
1 ` ωpυq

1 ´ ωpυq
, pυ P Uq,

which implies

ωpυq “

´

ΞmN`1

1´α

¯

ř8

κ“N`1 aκυ
κ´1

´2 ` 2
řN
κ“2 aκυ

κ´1 `

´

ΞmN`1

1´α

¯

ř8

κ“N`1 aκυ
κ´1

.

Obviously, ωp0q “ 0, and

|ωpυq| ď

´

ΞmN`1

1´α

¯

ř8

κ“N`1 aκ

2 ´ 2
řN
κ“2 aκ ´

´

ΞmN`1

1´α

¯

ř8

κ“N`1 aκ
.

Now, |ωpυq| ď 1 if and only if

2

ˆ

ΞmN`1

1 ´ α

˙ 8
ÿ

κ“N`1

aκ ď 2 ´ 2
N
ÿ

κ“2

aκ,

or, equivalently,
N
ÿ

κ“2

aκ `

8
ÿ

κ“N`1

ˆ

ΞmN`1

1 ´ α

˙

aκ ď 1,

In view of (5), it is sufficient to show that

N
ÿ

κ“2

aκ `

8
ÿ

κ“N`1

ˆ

ΞmN`1

1 ´ α

˙

aκ ď

8
ÿ

κ“2

ˆ

Ξmκ
1 ´ α

˙

aκ,

which is equivalent to to showing that

N
ÿ

κ“2

ˆ

Ξmκ ` α ´ 1

1 ´ α

˙

aκ `

8
ÿ

κ“N`1

ˆ

Ξmκ ´ ΞmN`1

1 ´ α

˙

aκ ě 0. (18)

We observe that the first term of the first series in (18) is positive and, since Ξmκ is a non-decreasing sequence,
all the subsequent terms in the first series are also positive. Additionally, the first term of the second series in
(18) is zero, and all the remaining terms in this series are positive as well. Consequently, the inequality (18)
holds true. Therefore, the proof of (15) is complete.

The proof of (16) follows by showing that

ΞmN`1 ´ α ` 1

1 ´ α

ˆ

fN pυq

fpυq
´

ΞmN`1

ΞmN`1 ´ α ` 1

˙

ă
1 ` υ

1 ´ υ
, pυ P Uq,

using similar arguments to those in (15), and is hence omitted.

Finally, it can be verified that the function given by (17) gives the sharp result in (15) and (16), when, υ “

re2πiäN and r Ñ 1´.
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Theorem 4.2. If f P A˚ in the form of equation (2) satisfies the condition (5), then

Re
"

f 1pυq

f 1
N pυq

*

ě
ΞmN`1 ´ pN ` 1qp1 ´ αq

ΞmN`1

, (19)

and

Re
"

f 1
N pυq

f 1pυq

*

ě
ΞmN`1

ΞmN`1 ` pN ` 1qp1 ´ αq
. (20)

The results are sharp for every N P Nzt1u, with the extremal functions given by (17).

Proof. To prove (19), it is sufficient to prove that

ΞmN`1

pN ` 1qp1 ´ αq

ˆ

f 1pυq

f 1
N pυq

´
ΞmN`1 ´ pN ` 1qp1 ´ αq

ΞmN`1

˙

ă
1 ` υ

1 ´ υ
, pυ P Uq.

Define the function ωpυq by

ΞmN`1

pN ` 1qp1 ´ αq

˜

1 ´
ř8

κ“2 κaκυ
κ´1

1 ´
řN
κ“2 κaκυ

κ´1
´

ΞmN`1 ´ pN ` 1qp1 ´ αq

ΞmN`1

¸

“
1 ` ωpυq

1 ´ ωpυq
, pυ P Uq,

which implies

ωpυq “

´

ΞmN`1

pN`1qp1´αq

¯

ř8

κ“N`1 κaκυ
κ´1

´2 ` 2
řN
κ“2 κaκυ

κ´1 `

´

ΞmN`1

pN`1qp1´αq

¯

ř8

κ“N`1 κaκυ
κ´1

.

Obviously, ωp0q “ 0, and

|ωpυq| ď

´

ΞmN`1

pN`1qp1´αq

¯

ř8

κ“N`1 κaκ

2 ´ 2
řN
κ“2 κaκ ´

´

ΞmN`1

pN`1qp1´αq

¯

ř8

κ“N`1 κaκ
.

Now, |ωpυq| ď 1 if and only if

2

ˆ

ΞmN`1

pN ` 1qp1 ´ αq

˙ 8
ÿ

κ“N`1

κaκ ď 2 ´ 2
N
ÿ

κ“2

κaκ,

or, equivalently,
N
ÿ

κ“2

κaκ `

8
ÿ

κ“N`1

ˆ

ΞmN`1

pN ` 1qp1 ´ αq

˙

κaκ ď 1,

In view of (5), it is sufficient to show that

N
ÿ

κ“2

κaκ `

8
ÿ

κ“N`1

ˆ

ΞmN`1

pN ` 1qp1 ´ αq

˙

κaκ ď

8
ÿ

κ“2

Ξmκ
p1 ´ αq

aκ,

which is equivalent to to showing that

N
ÿ

κ“2

ˆ

Ξmκ ´ κp1 ´ αq

p1 ´ αq

˙

aκ `

8
ÿ

κ“N`1

ˆ

pN ` 1qΞmκ ´ nΞmN`1

pN ` 1qp1 ´ αq

˙

aκ ě 0. (21)

We observe that the first term of the first series in (21) is positive and, since Ξmκ is a non-decreasing sequence,
all the subsequent terms in the first series are also positive. Additionally, the first term of the second series in
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(21) is zero, and all the remaining terms in this series are positive as well. Consequently, the inequality (21)
holds true. Therefore, the proof of (19) is complete.

The proof of (20) follows by showing that

ΞmN`1 ` pN ` 1qp1 ´ αq

pN ` 1qp1 ´ αq

ˆ

f 1
N pυq

f 1pυq
´

ΞmN`1

ΞmN`1 ` pN ` 1qp1 ´ αq

˙

ă
1 ` υ

1 ´ υ
, pυ P Uq,

using similar arguments to those in (19), and is hence omitted.

Finally, it can be verified that the function given by (17) gives the sharp result in (19) and (20), when, υ “

re2πiäN and r Ñ 1´.

5 Concluding Remarks

In this work, we thoroughly investigate the geometric properties of a general subclass of analytic functions
with negative coefficients, denoted as B˚m,ψpφ, δ, αq, which is defined by the application of a generalized
multiplier transformation operator Imψ. This class of functions plays a significant role in complex analy-
sis, particularly in understanding the behavior of various function families in terms of their starlikeness and
convexity.

Our analysis focuses on several important aspects, including the inclusion relations between this subclass and
other well-known classes of analytic functions. We also examine the neighborhood properties of functions
within this subclass, which provides insight into how these functions relate to others in terms of proximity
and structural similarity in the complex plane. Furthermore, we delve into the partial sums of these functions,
which is a crucial area of study in determining the approximation properties and convergence behaviors.

The results we have obtained not only generalize certain known theorems but also provide new insights into the
structure of these analytic functions. Our findings have the potential to verify and extend numerous existing
results in the literature, thereby contributing to a deeper understanding of the interplay between geometric
function theory and operator theory. Through this work, we aim to offer a comprehensive exploration of the
subject, paving the way for future research in this area.
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