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Abstract 

Glaucoma is a common disease affecting the human retina, primarily caused by elevated intraocular pressure. 

Early intervention is crucial to prevent damage to the affected organs, which could lead to their dysfunction. This 

paper focuses on enhance diagnosis accuracy of the system to determine if a patient is at risk of developing 

glaucoma. In this paper a novel convolutional neural network (CNN) designed, specifically for the detection of 

glaucoma in fundus images. This architecture optimizes for the unique characteristics of fundus imagery, 

enhancing detection accuracy, and also compiled a large and diverse dataset of fundus images, crucial for training 

and validating our CNN model. The dataset includes a significant number of images with detailed annotations, 

ensuring robust model training. In addition, implemented sophisticated image preprocessing methods to enhance 

the quality of the fundus images. These techniques, including noise reduction and contrast enhancement, 

significantly improve the input data quality for the CNN. The system operates in three stages. First, it preprocesses 

the image by cropping, enhancing, and resizing it to a consistent 256×256 pixels. Next, it employs an advanced 

feature extraction to analyses key features of the optic disc and optic cup in retinal images. Finally, the Soft-Max 

function classifies the images, identifying those with glaucoma and distinguishing them from normal eye samples. 

The model's performance was thoroughly evaluated using various metrics like accuracy, Sensitivity, specificity, 

and the area under the curve are metrics used to evaluate the performance of a diagnostic test. Sensitivity measures 

the test's ability to correctly identify positive cases, specificity assesses its accuracy in identifying negative cases, 

and the area under the curve indicates the overall effectiveness of the test across different thresholds. The results 

achieved by the proposed system were thoroughly analyzed, revealing a high accuracy rate in glaucoma 

classification, reaching 99%. 

Keywords: Glaucoma; Convolution neural network CNN; Medical imaging; Deep learning, Ocular Disease 

Intelligent Recognition  

1. Introduction 

Glaucoma is the most severe and prevalent illness affecting the human eye. Glaucoma is a long-term condition 

that causes damage to the optic nerve, and it is the second leading cause of blindness and visual loss. [1][2]. This 

illness can potentially cause irreversible blindness [3]. By 2020, 80 million individuals will have glaucoma [4], 

increasing to 111.8 million in 2040, aging from 40-80 years [5]. There are superfluities associated with glaucoma, 

including very high intraocular concentrations inside the human eye, which are known to be harmful to both the 

blood vessels and the optic nerve. Eye physicians who do eye illness tests must be highly competent and have 

enough time to identify the condition [6]. Given the growing number of individuals suffering from glaucoma, 

depending on medical equipment to identify and detect the illness may become impractical [7]. Extensive research 

is being conducted utilizing different image processing methods to address the early identification of glaucoma 

issues [8]. Table (1) depicts a normal fundus image vs. glaucoma from several datasets. In recent research, the 

National Eye Institute (NEI) discovered that the estimated rise in glaucoma patients is concerning compared to 

https://doi.org/10.54216/FPA.170202
mailto:ali.alsultan@uobabylon.edu.iq


 

Fusion: Practice and Applications (FPA)                                                           Vol. 17, No. 02. PP. 11-23, 2025 

12 
DOI: https://doi.org/10.54216/FPA.170202       
Received: January 14, 2024 Revised: April 11, 2024 Accepted: September 12, 2024 

 

previous years. With a significant increase in individuals suffering from glaucoma and DR, early identification of 

these eye illnesses is critical for early detection of glaucoma and DR. Therefore, earlier treatment may avoid 

irreversible blindness. Nonetheless, many patients are unaware of the disease until it has progressed to a dangerous 

level [9]. 

2. Related Work 

Ajitha S., M V Judy, et al. [10] In this study, an automated glaucoma screening framework using an Alexnet model 

and SVM classifier to enhance the accuracy of classification. In this study, three datasets were used (Drishti_GS1, 

Origa, and HRF). The obtained accuracy is 91.21%. Baidaa Al-Bander et al. [11] present an automated approach 

based on a convolutional neural network that can distinguish the eye with glaucoma from the unaffected. The 

feature is extracted from images using CNN, and then the SVM is used for classification. The results were 88.2% 

accuracy, 90.8 % specificity, and 85% sensitivity, respectively.  

Ravi Kumar Gupta, Utkarsh Sharma, et al. [12] The proposed model for Deep Learning consists of six layers: four 

convolution layers and two fully functional levels. To improve the precision of glaucoma diagnosis, 

discontinuation and augmentation techniques are utilized. Details on ORIGA and SCES have been rigorously 

examined. Mary, J. et al. [13] Construct a CNN-based system for the automated diagnosis of glaucoma using deep 

learning. The proposed architecture has six learning techniques, including four convolutional strata and two fully 

interconnected strata. The results demonstrate that the recipient's area under the curve, (called shortly AUC) is 

much greater than the recent methods in the detection of glaucoma disease with 0.831 for the ORIGA and 0.887 

for the SCES databases respectively. Silvia Ovreiu, et al. [14] in this work the residual networks were used to 

identify the early stages of glaucoma and to launch an exclusive dataset of early-stage glaucoma fundus images. 

The ResNet50 network, which at first received its training on the ImageNet dataset.  

On the validation set, the degree of accuracy reached a level of 96.95%. Orlando, José Ignacio, et al. [15] Provide 

results from a feasibility study using pre-trained CNNs built from data sources other than medical records for 

automatic glaucoma diagnosis. The fundus images were fed into two CNN, Over-Feat and VGG-S, which then 

generated feature vectors. The area under the average ROC curve was utilized to evaluate the results on the Drishti-

GS1 dataset. Serte, Sertan, et al. [16] this article describes an algorithm of deep learning for diagnosing glaucoma 

using fundus images. Unlike earlier research, this model was applied to various datasets and architectures. The 

findings indicate that the model is 80% superior to the previous work in the literature. 

3. Material and Methods 

3.1 Main Dataset Description  

A structured ophthalmic database, Ocular Disease Intelligent Recognition (ODIR) has information on over 5,000 

cases, including their ages of fundus images. This data collection is collected by the company from several Chinese 

medical facilities. The dataset divides people into eight categories according to their health: normal (N), diabetic 

(D), glaucoma (G), cataract (C), AMD (A), hypertensive (H), myopic (M), and other (O). The proposed system 

deal with glaucoma disease only; therefore, 1030 fundus image were taken from the ODIR dataset and split into 

70% training and 30% testing; Table (1) shows the images separated into their various ODIR datasets These 

datasets are useful for a wide variety of different types of study. [17][18][19].  

Table (1) Statistics of ODIR dataset 

 Glaucoma Normal Total 

Train 210 500 710 

Test 155 165 320 

Total 365 665 1030 

 

3.2 Other Datasets 

The proposed system was evaluated using multiple standard datasets and its performance was compared with 

previous studies. Five additional public databases were utilized in this work: the sjchoi86-HRF database containing 

401 images, the HRF database with 45 images, and the ACRIMA database with 705 images; RIM-ONE [23], with 

455 images; ORIGA [24], and Drishti-GS1 [25], with 101 samples. Table (2) show the details of these datasets. 
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Table (2) Datasets details of glaucoma disease 

 

Database Glaucoma Normal Total 

ODIR [19] 365 665 1030 

Sjchoi86-HRF [20] 101 300 401 

HRF [21] 27 18 45 

ACRIMA [22] 396 309 705 

RIM-ONE [23] 194 261 455 

ORIGA [24] 168 482 650 

Drishti-GS1 [25] 70 31 101 

 

4. Methodology 

The suggested method may be subdivided into three stages. This is the first stage is the images dataset 

preprocessing stage, which contains several prepared images before being handled by the CNN model. These 

stages start by resizing all dataset images into (256*256) pixels, converting color images to greyscale images, and 

minimizing the effect of noise with a mean filter. The contrast-limited adaptive histogram equalization “CLAHE” 

[26] will be used to improve the contrast. To achieve this effect, scale the image size by 255. In the second step, 

crucial features are extracted from the collected fundus images by CNN. In the last step, these features are used to 

label the fundus images as either normal or glaucoma. Figure 1 show the block diagram of the proposed system. 

The details of preprocessing as the following: 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The block diagram of the proposed system 

A. Pre-processing: An integral part of the glaucoma detection system is the pre-processing phase. All of the 

dataset's fundus images have undergone this procedure to prepare them for the training phase and to set the 

stage for feature extraction. All images are converted to greyscale images, resized to (256*256) pixels, 

denoised by a mean filter, enhanced with CLAHE, and normalized by dividing by 255. 

Algorithm (1): Pre-processing operations 

Input: CT scan images. 

Output: Resized image # (256 * 256) grayscale 8-bit. 

1: Convert fundus images to grayscale. 

2: images resizing to 256 * 256 grayscale 8-bit                                                                    

3: Denoising image using mean filter 

4: Images enhancement by applying CLAHE technology using equation (1).                                                                                         
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𝑝𝑖𝑥 = (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛) ∗ 𝑝𝑖𝑥(𝑓) + 𝑝𝑚𝑖𝑛             (1) 

Where Pmax and pmin stand for the maximum and minimum pixel values, respectively, while pix refer to the pixel 

value after CLAHE has been applied. Value of a picture, respectively, and Pix(f) reflects the cumulative probability 

distribution function after the clip limit has been reached. [26] 

Step 5: Images normalization, each pixel is rescaled from the range [0-255] is changed to [0-1] by dividing each 

pixel by 255. This rescales each pixel so that it falls inside the range [0-1]. 

1. Image Resize: A unified size is applied for all images supplied because of the size of images captured by a 

camera and submitted to various algorithms. The size of each image has been reduced so that it is exactly 256 

by 256 pixels. 

2. Grayscale Conversion: All colored images are converted to grayscale. Colour image with three channels 

(RGB) slows processing operations. Each channel has the project's requirements. To speed up the process while 

keeping quality, all images are converted to grayscale. 

3. Noise Reduction: Image gathering and transmission introduce noise. Image enhancement is crucial to image 

processing. Mean filters average for all pixel mask performance to make unique pixel based on other pixels' 

intensities. This eliminates grain noises in processed image. 

4. Images Enhancement: Image enhancement aims to improve a source image by highlighting its differences. 

Image noise removal completes the repair process. CLAHE was utilized to pre-treat the fundus image to boost 

image contrast, as seen in figure 2. 

5. Image Normalization: An essential part of any pre-processing of images. Given that the CNN operates on 

images in the range [0-1], this is accomplished by rescaling each pixel from the range [0-255] into the range [0-

1] using the division operator. 

 

      

 

 

 

 

   

                                         (a)                                          (b)                                               (c)  

Figure (2) preprocessing process (a) Input image   (b) CLAHE enhancement (c) Histogram after enhancement. 

B. Feature Extraction  

It gives important information about a shape in a pattern, where a formal approach allows for easy access to the 

model's classification. With regards to processing images and pattern recognition. Extraction of features is a 

method of reducing the number of dimensions. Extracting primary features is done so as to learn the most important 

properties. This data will then be represented in lower dimensional areas. Attributes were extracted from the 

dataset's fundus images of glaucoma by employing CNN. A CNN's architecture includes numerous layers to 

optimize feature extraction. Table 4 presents the proposed structure of the CNN along with the input and output 

sizes. 

 

C. Classification 

 

Features are extracted from retina images in a database to determine what information is most important to convey 

and to reduce the number of dimensions used to represent the data while making a glaucoma diagnosis. These 

collected features are used to create a classification that distinguishes glaucoma from healthy individuals. Through 

flatten layer is applied, a complete connection is made between a series of thinner structural layers, each of which 

contains an activation function (ReLU). The final layer is the dense layer, which is used for classification. Using 

a down-sampling procedure, the pooling layer decreases the size of the produced features, hence lowering the 

network's total processing cost [27]. Softmax is the most frequent last-layer activation function in CNNs. [28].  

Following the Flatten layer, a fully connected dense layer with a ReLU activation function is employed. A dropout 

layer with a 0.2 ratio is included to regulate the network and prevent overfitting. The final diagnosis of glaucoma 

is determined in the output layer (Dense layer 2), which is fully connected. The output from this layer is processed 

by the SoftMax activation function to calculate probabilities for each category based on the input image. These 

probabilities are then used in the loss function to determine the error, which adjusts the network's weights via 

backpropagation during training. The CNN training employs the Adam optimization algorithm and the sparse 
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categorical cross-entropy loss function for evaluation. Learning rate reduction is applied when model performance 

plateaus, and early stopping is used to find the optimal number of epochs. Training involves preprocessing 

augmented data, with forward and backward passes across several epochs guided by early stopping to minimize 

error and adjust weights. The result is a set of trained weights and kernels for each layer, which are saved for use 

during testing. During testing, the CNN is evaluated using unseen test data, starting with preprocessing as outlined 

in Algorithm 1. The DCNN proposed structure contains the layers below: 

1.  Convolutional 2D: The first one start with conv. one. The laer will learn from 16 filters with size 3 by 3, no 

padding, and adapt “rectified linear activation function or ReLU” as the activation function. Where image with 

256 by 256 are what this layer's gets as input. After each layer of convolution.  

2. Maxpooling 2D: The layer has a size of 2 by 2 and a stride equal 2. This is the max pooling layer. It's important 

to remember that you don't have to configure the input shape because it automatically done by the net based 

on the layer before it. In Max pooling, the Max value for the group of neurons in the layer below is used. The 

Max-pooling attribute was used to reduce the number of feature maps that came from earlier layers. 

3.  Convolutional 2D: is also a convolutional layer. There are 32 filters with kernel of 3 by3, no-padding and the 

applied activation function is “ReLU”.  

4. Maxpooling 2D: The dimension of 2 by2, and stride with value of 2 utilized.  

5. The Dropout: A dropout regulation with a 0.2 rate used. 

6.  Convolutional 2D: The convolutional kernel size 3 by 3, with no padding, and adapting “ReLU” as activating 

function.  

7.  Maxpooling 2D: The max-pooling layer the stride is 2 and the size of a kernel is 2 by 2. 

8.  The Dropout: Dropout regulation layer with a ratio of 0.20, and feed into the “fully connected layer”. The 3D 

feature maps converted into vectors. 

9. The Flatten: The output from the Max-pooling layer in the fifth block is a 2D matrix, which passes through a 

dropout layer and is reshaped via column scanning to form a one-dimensional vector. This vector is then fed 

into a fully connected layer.  

10. Dense1: The size of the output layer will be 128, and select motivated ReLU as activation.  

11. Dense2: Two units will be used in this layer (Nonglaucoma and glaucoma), and the Softmax was utilized. 

Table (3) shows the CNN Model details. 

 

Table (3) CNN Model Details (sequential model) 

 

Layer (type) Output Shape Param # 

Conv 2D (256,256,16) 160 

Max-Pool-2D (128,128,16) 0 

Conv 2D (128,128,32) 4640 

Max-Pooling-2D (64, 64, 32) 0 

Dropout (64, 64, 32) 0 

Conv 2D (64, 64, 64) 18496 

Max-Pool-2D (32, 32, 64) 0 

Dropout (32, 32, 64) 0 

Flatten (65536) 0 

Dense1 (128) 8388736 

Dense2 (2) 258 

Total params                                   8,412,290 

Trainable params                            8,412,290 

 

The next step is to process the images through the CNN architecture in a forward direction to extract features. This 

process utilizes the trained weights from the fully connected layers and the trained kernels from the convolutional 

layers, which were saved during training, the images are then classified as either glaucoma or normal in the test 

phase.  
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D. Evaluation Metrics 

To assess the proposed method, various performance metrics were used, including Accuracy, Sensitivity, 

Specificity, and AUC. Multiple criteria were employed to evaluate the model's efficiency [29] [30]:  

1. Accuracy (Acc): = 
𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔

𝑇𝑃𝑜𝑠  + 𝐹𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔 + 𝐹𝑁𝑒𝑔
  (2) 

2. Sensitivity (Sen): Sen = 
𝑇𝑃𝑜𝑠 

𝑇𝑃𝑜𝑠  + 𝐹𝑁𝑒𝑔
             (3) Specificity (Spe): Spe = 

𝑇𝑁𝑒𝑔

𝑇𝑁𝑒𝑔 +  𝐹𝑃𝑜𝑠 
                   (4) 

      Where 𝑇𝑃𝑜𝑠: TruePositive, 𝐹𝑃𝑜𝑠: FalsePositive,   

       𝑇𝑁𝑒𝑔: TrueNegative, 𝐹𝑁𝑒𝑔: FalseNegative. 

3. Area Under Curve (AUC): The higher the AUC, the better the performance of the model at distinguishing 

between the positive and negative classes 

   𝐴𝑈𝐶 =
Sensitivity+Specificity 

2
                     (5) 

5. Results and Discussion 

To prove the efficiency of a proposed system in terms of glaucoma diagnostic, we compare CNN predictions to a 

state-of-the-art reconstruction-based method. By applying the same setting for several datasets. A True positive is 

a diagnosis that is both correct (healthy) and classified as non-glaucoma (normal eye). Based on the sampled and 

analyzed photos from the ODIR datasets, a false positive diagnosis can be made (glaucoma classified as non-

glaucoma (normal)). Negative diagnoses (such as an eye tested positive for glaucoma being classified as "normal") 

should be labelled "True negative," whereas "False negative" labels would be inaccurate (Normal categorized as 

glaucoma). The suggested system's classification report using ODIR datasets is displayed in Table (4). 

 

Table 4: details of classification report for ODIR dataset 

 

 F1-score Support Precision Recall 

Normal 0.980 165 0.970 0.990 

Glaucoma 0.980 155 0.990 0.960 

Accuracy 0.990 320   

Weighted Avg 0.980 320 0.980 0.980 

Macro Avg 0.980 320 0.980 0.980 

 

The proposed work was evaluated using the ODIR dataset, with 70% of the database coming was used to train the 

system, and 30% of the database was used to test the system performance. Macro-Avg is the mean average of 

precision/recall/F1 of all classes, while weighed-Avg is the total number of true positives of all classes divided by 

the total number of objects in all classes. In the conclusion, an impartial evaluation of the plan was carried out by 

making use of the test results. The (confusion matrix) that was used for the DCNN classification for the ODIR 

dataset is shown in Figure 3. The best accuracy of the proposed system, which is represented by the confusion 

matrix is accuracy: 0.9906; sensitivity: 1.00; specificity: 0.9806; and AUC: 0.9903.  

 

 

 

 

 

 

 

 

Figure 3. ODIR dataset's Confusion Matrix. 
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The ODIR dataset has 710 samples of fundus image in the train set and 320 samples in the test set; the obtained 

results in the training phase, loss: 0.0060 and accuracy: 1.00, and in the testing phase, loss: 0.0421 and accuracy: 

0.9906. The accuracy and loss using the ODIR dataset is shown in Figures 4 below: 

 

 

 

 

 

 

 

 

 

 

Figure 4. Accuracy and Loss for the ODIR dataset. 

5.1 Results of SCES dataset 

In the proposed system applied to the SCES data set, the training loss is 0.0239, and the training accuracy is 0.9941, 

while the test loss is 0.0126 and the test accuracy is 0.9960. The computed sensitivity is 1.0000, specificity: is 

0.9048, and AUC is 0.9524. Figure (5) shows the confusion matrix, and Figures (6) shows the accuracy and loss 

obtained for the SCES dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5) Confusion Matrix of SCES dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Accuracy and Loss for the SCES dataset. 
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5.2 Results for Rim One Dataset 

The proposed system was applied on Rim one data set, which contained a total of 455 sample images and split into 

a training set 318 and a test set 137 (75 glaucoma, 62 average). The training loss is 0.0970, and the training 

accuracy is 0.9634, while the test loss is 0.0984, and the test accuracy is 0.9625. The computed sensitivity is 

0.9839, specificity: is 0.9867, and AUC is 0.9853. Figure 7 show the confusion matrix and Figures 8 show the 

accuracy and loss obtained for Rim one dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Confusion Matrix of Rim One dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Accuracy and Loss for the RIM-ONE dataset. 

5.3 Results for ACRIMA Dataset 

The proposed system was applied to the ACRIMA data set, which contains a total of 705 sample images and split 

into a training set of 494 and a test set of 211 (110 glaucoma, 101 normal). The training loss is 0.0271and the 

training accuracy is 0.9958, while the test loss is 0.0360 and the test accuracy is 0.9906. The computed sensitivity 

is 0.9839, specificity: is 0.9867, and AUC is 0.9853. Figure 9 show the confusion matrix of ACRIMA dataset and 

Figures 10 shows the accuracy and loss obtained for ACRIMA dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (9) Confusion Matrix of ACRIMA dataset 
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Figure 10. Accuracy and Loss for the ACRIMA dataset. 

 

5.4 Results for Drishti-GS1 Dataset  

The proposed system was applied to the Drishti-GS1 data set, which contains a total of 101 sample images and 

split into training set 71 and test set 30 (20 glaucoma, 10 normal).  The training loss is 0.0408, and the training 

accuracy is 0.9915, while the test loss is 0.0877 and the test accuracy is 0.9719. The computed sensitivity is 1.0000, 

specificity: is 0.9500, and AUC is 0.9750. Figure 11 shows the confusion matrix for Drishti-GS1 dataset, and 

Figures 12 shows the accuracy and loss obtained for Drishti-GS1 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Confusion Matrix of Drishti-GS1 dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Accuracy and Loss for the Drishti-GS1 dataset. 

 

5.5 Results for ORIGA dataset 

The proposed system was applied to the ORIGA data set, which contains a total of 650 sample images, and split 

into a training set of 455 and a test set of 195 (85 glaucoma, 110 normal). The training loss is 0.0610, and the 

training accuracy is 0.9803, while the test loss is 0.0872 and the test accuracy is 0.9688. The computed sensitivity 
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is 0.9818, specificity: is 0.9882, and AUC is 0.9850. Figure 13 shows the confusion matrix for the ORIGA dataset, 

and Figures 14 shows the accuracy and loss obtained for the ORIGA dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Confusion Matrix of ORIGA dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (14) Accuracy and Loss for the ORIGA dataset. 

 

The proposed system is applied to several datasets mainly ODIR dataset, then using ORIGA, DRISHTI-GS1, Rim 

one, HRF, and SCES, and the performance parameters are evaluated, such as Sensitivity, Accuracy, Area under 

the curve, and specificity. A higher accuracy ratio was obtained when using the SCES dataset about 0.996, as 

shown in figure 15. The proposed system is evaluated through make a comparison with a number of different deep 

learning algorithms for the diagnosis of glaucoma, and some of these algorithms make use of the same data set. It 

was discovered, through analysis of how the proposed method compares to earlier efforts, that the shows better 

performance accuracy. The average of the calculated results of Accuracy, Sensitivity, specificity, and AUC were 

computed for each dataset, and the obtained results were compared with the other methods, as the following Table 

(5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Proposed system performance measurement 
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Table 5: proposed model Comparison with various glaucoma detection methods 

Author Dataset Specificity AUC Accuracy Sensitivity 

Proposed CNN system ODIR dataset 0.9806 0.9903 0.9906 1 

 ORIGA dataset 0.9882 0.985 0.9688 0.9818 

 RIM-ONE 0.9867 0.9853 0.9625 0.9839 

 DRISTI-GS1 0.95 0.975 0.9719 1 

 SCES Dataset 0.9048 0.9524 0.996 1 

Ajitha S, M.V Judy et al, 

[10] 

HRF, Origa and 

DrishtiGS1 
  91.2100  

Baidaa Al-Bander et al. 

[11] 

RIM-ONE 
0.9080  0.8820 0.8500 

Gupta, R. K. et al. [12] SCES Dataset  0.8870   

 ORIGA Dataset  0.8310   

Mary, J., [13] ORIGA Dataset  0.8310   

 SCES databases  0.8870   

Ovreiu, S., et al. [14] ImageNet   96.9500  

Bajwa, M. Naseer, et al. 

[29] 

ORIGA dataset 
 86.8000  0.7100 

Chen, X. and et al. [31] ORIGA datasets  0.8310   

 SCES datasets  0.8870   

Fu, Huazhu, et al.: MNet 

[32] 

SCES datasets 
0.8706 0.8998 0.8157 0.7609 

Fu, Huazhu, et al. :DENet 

system [32] 

SCES datasets 
0.8380 0.9183 0.8429 0.8478 

Oh, Sejong et al. [33] Gyeong sang 

National University 

Hospital 

0.9500  0.9470 0.9410 

Soltani, A. et al. [34] Local Dataset 104 

images 
  0.9615  

Sreng, Syna, et al. [35] DRISTI-GS1  0.9206 0.9000  

 ORIGA dataset  0.8526 0.8000  

 REFUGE dataset  94.3200 0.9575  

 RIM-ONE dataset  99.0400 92.1100  

Ramaida, Fira Mutia, et 

al. [36] 

Local Dataset 
  0.9400  

Sang Phan et al. [37] KOSEI hospital 

dataset 
 0.9000   

6. Conclusion 

This study puts out the idea of an automated glaucoma detection system that is powered by deep convolutional 

neural networks. In the beginning, a glaucoma data collection consisting of fundus images was pre-processed and 

improved so that the data set would be better suited for feeding the deep network. The preprocessing operation 
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increase the prediction accuracy. The suggested network investigated a variety of network layers, activation 

functions, loss functions, and optimization techniques in order to lessen the amount of processing required while 

keeping the same level of model accuracy. The SCES dataset yielded a classification accuracy of 0.996 percent, 

which was the best possible result. When evaluated beside other works of a same nature, this system did 

exceptionally well. Ophthalmologists were able to identify glaucoma more quickly and precisely with less network 

parameters thanks to this method, which was both very cost-effective and accurate. Additionally, there were fewer 

parameters, thus the method required less time. 
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