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1. Introduction 

Fog computing, also known as fog networking, is a decentralized computing infrastructure that extends computing 

resources and services closer to the data source or endpoint devices, as opposed to relying solely on centralized 

cloud servers. This approach is particularly relevant in the context of the IoT and other edge computing 

applications [1]. Fog computing, a decentralized computing model, positions computing resources at the network's 

edge, reducing latency and enabling faster response times. This is critical for applications like autonomous 

vehicles, industrial automation, and smart cities. Serving as an intermediary layer between IoT devices and the 

cloud, it utilizes devices such as routers and edge servers to process and filter data locally, reducing network data 

transmission. FC facilitates distributed data processing for real-time analytics and decision-making, addressing 
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Abstract 

Task scheduling (TS) in fog computing (FC) involves efficiently allocating computing tasks to fog nodes, 

considering factors such as minimizing execution time, energy consumption, and latency to meet the quality-

of-service (QoS) requirements of the Internet of Things (IoT) and edge devices. Efficient TS in FC is crucial 

for optimizing resource usage, minimizing latency, and ensuring that IoT and edge devices receive timely and 

high-quality services. The growing complexity of FC environments, along with the dynamic nature of IoT 

applications, necessitates innovative TS models using metaheuristic algorithms to allocate tasks and meet 

diverse quality-of-service requirements efficiently. This research introduces the GTO-SSSA (Gorilla Troops 

Optimization with Skip Salp Swarm Algorithm), a novel model for intelligent TS in FC environments. This 

model capitalizes on the collaborative nature of the GTO algorithm while incorporating enhanced exploration 

and exploitation capabilities via the SSSA algorithm's skipping mechanism. The primary objective of GTO-

SSSA is to tackle the intricate challenges of TS in FC effectively. This includes the efficient allocation of tasks 

to fog nodes, considering multiple objectives such as minimizing makespan, execution time, and throughput. 

The GTO-SSSA model in FC demonstrates improved efficiency, consistently surpassing compared models 

across various task quantities with significantly reduced makespan values. Performance improvement rates for 

GTO-SSSA over other models show substantial gains in TS efficiency, ranging from 0.87% to 17.83%. The 

model exhibits scalability as it maintains its efficiency even with an increased number of tasks, aligning with 

the dynamic nature of IoT applications. 
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bandwidth constraints and immediate action requirements. Its scalability allows for easy expansion by adding 

more fog nodes, making it ideal for handling increasing IoT data. Distributed processing enhances reliability, 

ensuring applications continue to function even if one node fails, crucial for mission-critical systems. Additionally, 

it improves security and privacy by keeping sensitive data at the edge, reducing data breach risks during 

transmission. FC finds application across various domains, including smart manufacturing, smart cities, 

healthcare, agriculture, and autonomous vehicles, where it can locally process sensor data for real-time decision-

making, reducing reliance on remote cloud servers [2]. 

 

Figure 1. Architecture of FC 

Figure 1 presents the structure layers of FC: the cloud layer, the fog layer, and the user device layer. The top layer, 

known as the cloud layer, is equipped with robust computing and storage servers designed to handle extensive 

data storage and complex computational tasks to support a wide range of application services as required. 

Positioned at the network's edge, the fog layer is comprised of numerous fog nodes, which may be physical or 

virtual. The fog nodes are strategically distributed among the cloud layer and end-user devices and possess the 

capacity to engage in computing tasks, data transmission, and temporary data storage. Real-time applications 

significantly benefit from data analysis and service delivery within the fog layer, and fog nodes also facilitate 

connections and collaboration with neighbouring nodes. The user device layer, closest to the end-users and 

physical environment, encompasses a variety of sensors and IoT devices. In this architectural setup, all the sensors 

or end devices are linked to a fog node, utilizing either wired or wireless connections such as Wi-Fi, 4G, 5G, 

wireless local area networks, Bluetooth, and ZigBee. Additionally, fog nodes can establish connections with one 

another through both wired and wireless communication technologies [1]. Furthermore, FC's flexibility is 

enhanced by its compatibility with various communication technologies, offering wired connections for reliability 

and security, as well as wireless technologies for greater mobility and coverage. Fog nodes' ability to communicate 

through multiple wireless or wired channels enables the creation of resilient, self-organizing networks, ensuring 

operational continuity, even in the face of network disruptions or congestion [3]. In the field of FC, task scheduling 

is a diverse process that involves offloading computational tasks from centralized cloud servers to nearby fog 

nodes, which are better positioned to handle the workload. This decision-making encompasses various factors, 

such as the complexity of tasks, data size, and the geographical proximity of data sources. A primary objective of 

FC is to minimize latency, making TS important in achieving this goal by assigning tasks to fog nodes with quick 

response times, which is particularly critical for real-time applications like autonomous vehicles and industrial 

automation. Furthermore, TS entails optimizing resource allocation by aligning task requirements with the 

computational and storage capabilities of fog nodes to ensure efficient execution without overloading any specific 

node [4].  
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Figure 2. Task Scheduling in FC 

TS's primary objective is to smartly choose a Fog node that can efficiently complete a task within a set deadline, 

ensuring uninterrupted user services. This process encompasses several phases depicted in Figure 2. It starts with 

the reception of requests from IoT sensors or devices, followed by task prioritization through a request evaluator. 

The subsequent step involves selecting a scheduling node based on factors like computational complexity and 

resource demands. High-priority real-time tasks are queued and managed by a task scheduler, which assigns them 

to resource-efficient Fog nodes. This selection is guided by ranking methods, with the task scheduler collaborating 

with the resource manager to ensure the availability of suitable Fog nodes for scheduling [5]. Finally, advanced 

techniques like machine learning and optimization algorithms are increasingly harnessed to diffuse intelligence 

into TS, allowing algorithms to learn from historical data and dynamically adapt to shifting conditions, ultimately 

enhancing the efficiency and performance of FC systems [7]. Utilizing metaheuristic algorithms for TS in FC is 

highly significant due to their efficiency in exploring solution spaces and optimizing complex scheduling 

problems, often achieving near-optimal or optimal solutions where traditional methods may fail. These 

metaheuristic algorithms offer real-time adaptability, a critical factor in FC, allowing for on-the-fly re-

optimization to accommodate dynamic data processing requirements. They play a significant role in reducing 

latency by swiftly assigning tasks to nearby fog nodes, improving real-time performance. Moreover, their 

scalability, customization, robustness in handling uncertainty, resource efficiency, capacity to address complex 

constraints, and capability to enhance system performance make them indispensable techniques for addressing 

the intricacies and demands of FC environments [8]. The research problem addressed in this work is the need for 

an efficient and intelligent TS approach within FC environments. As FC gains prominence in managing the vast 

data generated by IoT devices, ensuring optimal resource allocation and minimizing latency is a complex 

challenge. The problem revolves around developing a TS framework that can intelligently assign tasks to Fog 

nodes while considering factors such as computational complexity, resource constraints, and the dynamic nature 

of FC environments. The objective is to enhance system performance and provide seamless service to users. The 

primary scope revolves around FC environments, with a focus on TS. The research proposes a novel approach 

called the GTO-SSSA model to enhance the efficiency of resource allocation and TS in FC. 

The contributions of this research are to introduce an innovative model for improving IoT services in cloud-FC, 

demonstrating the impact of the GTO-SSSA method in terms of performance enhancement and the fulfilment of 

QoS requirements. This contributes to the broader field of FC and TS optimization. 

 To develop a TS method that combines the strengths of GTO and SSSA to address TS challenges in cloud-

FC environments efficiently. 
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 To optimize critical performance metrics, including makespan, improvement rate, and throughput time. The 

goal is to enhance the QoS requirements for IoT devices by improving these measures. 

 To conduct comprehensive experiments involving various tasks to assess the performance and effectiveness 

of the GTO-SSSA method empirically. These experiments aim to validate the proposed approach and 

demonstrate its superiority in terms of TS. 

 To compare the GTO-SSSA method against other scheduling techniques and methods to establish its 

advantages and effectiveness in terms of optimizing TS, making it a preferred choice for cloud-FC 

environments. 

The introduction section of this paper introduces the concept of TS in an FC environment and highlights the 

significance of utilizing metaheuristic algorithms for efficient TS. The subsequent sections cover related works in 

Section 2, detailed explanations of the GTO and SSSA algorithms and their implementation of TS in Section 3, 

simulation results and discussion in Section 4, and a conclusion along with recommendations for future 

suggestions in Section 5. 

2. Related Works 

This section provides a comprehensive overview of existing research and developments in the field of TS for FC 

environments. This critical analysis highlights various optimization techniques, multi-objective models, and 

innovative algorithms utilized to enhance resource allocation, reduce energy consumption, and improve QoS. The 

review offers insights into the evolving landscape of FC task scheduling research, setting the stage for the 

introduction of the proposed research model, which aims to address and potentially surpass the limitations 

observed in previous studies. FOG-AMOSM, an adaptive multi-objective optimization TS model for FC for cyber-

physical-social services, was developed in [9]. The work in [10] addressed energy-efficient TS in the FC 

environment by combining Invasive Weed Optimization (IWO) and the Cultural Evolution Algorithm (CEA). 

They introduced an energy-aware approach utilizing Dynamic Voltage and Frequency Scaling (DVFS) and 

employed an Invasive Weed Optimizer and Culture (IWO-CA) evolutionary approach to generate valid task 

sequences. Results confirmed significant energy savings for applications with predefined deadlines, highlighting 

the approach's effectiveness in reducing energy consumption in cloud data centres. A fog-based architecture for 

effective TS was developed in [11], formulated the problem as an Integer Linear Programming (ILP) model and 

proposed an enhanced approach called Opposition-based Chaotic Whale Optimization Algorithm (OppoCWOA) 

to expedite the problem's solution. This study tackled the TS problem in FC, emphasizing the optimization of time 

and energy consumption as key QoS parameters. By using partial opposition to increase population diversity, they 

improved TS performance and achieved faster convergence. A Moth-Flame Optimization (MFO) algorithm was 

implemented in [12] to address TS in FC for cyber-physical system applications. Their objective was to reduce 

the overall execution time of tasks while adhering to QoS constraints.  

CHMPAD, an approach that combined the chimp optimization with the marine predator algorithm (MPA), was 

proposed in [13] and a disruption operator to optimize TS for IoT applications in FC. CHMPAD aimed to address 

ChOA's limitations and enhance its performance by avoiding local optima. Experiments utilizing real and 

synthetic datasets from the Parallel Workload Archive confirmed the efficiency and consistency of model, 

particularly in terms of achieving average makespan time improvements. An energy-aware model based on the 

MPA was implemented in [14] to enhance TS in IoT-related FS applications, aiming to improve user-required 

QoS. The authors presented two enhanced versions of MPA: the modified MPA and an improved and modified 

MPA with additional strategies to mitigate local optima. Given the discreteness of TS compared to MPA's 

continuous nature, a normalization and scaling phase was implemented to adapt MPA for discrete TS. The results 

affirmed the effectiveness and superiority of the improved and modified MPA model in optimizing TS for 

enhanced QoS in FC applications. An energy-efficient TS scheme utilizing the artificial rabbit optimization (ARO) 

inspired by rabbits' survival behaviours, a model called ARO-EETSS, was developed in [15]. ARO-EETSS aimed 

to optimize TS in Cyber-Physical Systems (CPS), focusing on reducing task completion time and resource 

utilization. Through simulations, the study demonstrated ARO-EETSS's enhanced performance, emphasizing its 

efficiency within the CPS environment. The work in [16] addressed TS challenges within the Cloud-FC 

environment, a highly distributed platform catering to IoT application processing. A mathematical framework 

incorporating queue theory was devised to optimize workload allocation, ultimately reducing power consumption 

and delay. A multi-objective TS approach for FC was introduced in [17], combining the marine predator's 

algorithm with a polynomial mutation mechanism to optimize the makespan and carbon emission ratio. An 

external archive stored non-dominated solutions, and an improved variant was explored for enhanced 

convergence. While the improved variant outperformed the standard algorithm, the proposed one remained better. 

Comparisons with other multi-objective optimization algorithms confirmed the proposed model's consistently 

better performance across various metrics. A meta-heuristic scheduler called Smart Ant Colony Optimization 

(SACO) was introduced in [18] for task offloading in an FC environment, specifically for IoT-sensor applications. 
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The algorithm aimed to optimize task offloading to fog nodes, considering QoS constraints like latency, network 

characteristics, and node workloads. Results showed that the algorithm effectively reduced latency in IoT-sensor 

application task offloading. 

2.1. Research Gap Summary 

In the field of FC task scheduling, diverse approaches have been developed to optimize resource allocation, reduce 

energy consumption, and enhance QoS. These include multi-objective scheduling models, hybrid evolutionary 

algorithms, and meta-heuristic methods. Notable contributions include FOG-AMOSM, which tackles multi-

objective optimization, and approaches combining IWO, CEA, and unique optimization algorithms like 

OppoCWOA and MFO. Models like CHMPAD, energy-aware MPA and ARO, and MGWO focus on energy 

efficiency and optimal task distribution. Additionally, various multi-objective algorithms and SACO address TS 

for IoT applications. These studies collectively illustrate the breadth and evolution of FC task scheduling research, 

emphasizing resource optimization, energy efficiency, and QoS improvement. The proposed research model offers 

a compelling solution to address the limitations observed in existing works in TS for FC environments. The 

research model can overcome the limitations of existing approaches that often focus on specific optimization 

goals, such as execution time or energy efficiency, without simultaneously addressing other crucial parameters. It 

optimizes resource allocation efficiently while considering TS, including execution time, energy efficiency, QoS, 

and workload balancing. 

3. Proposed Research Model 

This research work is structured around a three-layer architecture, as depicted in Figure 2, comprising IoT smart 

devices at the bottom layer, including sensors, wearables, and medical devices that generate job/task demands. 

These demands are sent to the middle layer, which consists of fog nodes equipped with computing, storage, and 

networking capabilities. Fog nodes act as smart servers with limited resources. The top layer comprises the cloud 

nodes, featuring powerful servers with extensive computing capabilities. The architecture aims to optimize TS, 

directing time-sensitive tasks to nearby fog nodes to reduce delay and enhance processing efficiency. In contrast, 

compute-intensive tasks are routed to cloud nodes due to their superior computing capabilities. This layered 

approach provides a comprehensive framework for efficient task management in FC systems. The central element 

within the research model was the Fog Broker, which was situated within the layer of fog nodes and comprised 

three key components: the Resource Monitoring Service, Task Manager (TM), and Task Scheduler. TM is 

responsible for receiving requests of task from various distributed IoT users and devices, maintaining resource 

requirements and task characteristics, and hence forwarding these requests to the Tasks Scheduler. The Resource 

Monitoring Services, on the other hand, collects and monitors the status of available resources, sharing this 

information with both fog and cloud nodes to aid in scheduling decisions. In Fog Broker, the Task Scheduler runs 

algorithms for TS based on the features of the incoming tasks and the capabilities of resources available. It resolves 

the TS problem by mapping the task requests to the appropriate computing node, ultimately processing the 

requests of tasks, and returning the results to the Fog Broker, which could subsequently be transferred to the 

respective users. This architecture facilitates efficient task management and allocation in the FC environment. 

3.1. Formulation of the Problem 

The problem formulation for the FC-TS is established as follows: Consider a set of ‘n’ independent tasks, denoted 

as 𝑇 = [𝑇1, 𝑇2, … , 𝑇𝑛], which are submitted to the Fog Broker for processing within the cloud-FC framework. 

Every task, 𝑇𝑘, possesses specific attributes, including task length (measured in Millions of Instructions, MI), 

memory requirements, input and output file sizes, and a deadline. The cloud-fog system is comprised of m 

computing nodes CN, encompassing both cloud and fog nodes [𝐶𝑁 = 𝑁𝑐𝑙𝑜𝑢𝑑 ∪ 𝑁𝐹𝑜𝑔]. This can be represented as 

𝐶𝑁 = [𝐶𝑁1, 𝐶𝑁2, … , 𝐶𝑁𝑚], where 𝐶𝑁𝑗 signifies the jth CN in the system. Each 𝐶𝑁𝑗 is characterized by attributes 

like CPU processing ratio (measured in Millions of Instructions/ Second, MIPS), network bandwidth, memory 

capacity, and storage capacity. This mathematical framework forms the foundation for addressing the TS challenge 

in cloud-FC environments. Accordingly, the matrix ECT, with dimensions n × m, is employed to represent the 

computing time expected for requests of task on all the CNs. Here, n stands for the total requests of task, while m 

designates the CNs available. Task Scheduler makes utilize of this ECT matrix to inform scheduling decisions. 

Specifically, 𝐸𝐶𝑇𝑘,𝑗 signifies the anticipated execution time for the task 𝑇𝑘 on computing node 𝐶𝑁𝑗 and can be 

computed using the following approach. 

𝐸𝐶𝑇𝑘,𝑗 =
𝑇𝑠𝑘.𝐿𝑒𝑛𝑘

𝐶𝑁.𝑃𝑟𝑜𝑗
          (1) 
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In this equation, 𝑇𝑠𝑘. 𝐿𝑒𝑛𝑘 corresponds to the length of the task 𝑇𝑘, measured in MI, and 𝐶𝑁. 𝑃𝑜𝑤𝑗 represents the 

processing speed of 𝐶𝑁𝑗, quantified in MIPS. 

The task of assigning requests of task to available CNs was classified as the NP-complete issue. The principal aim 

involves identifying the optimal schedules those decreases the completion time, commonly known as the 

"makespan." This minimization is crucial to avoid lengthy task execution delays. The primary objective of this 

research was to solve the TS problem in a FC system with the key goal of reducing the makespan. For Z any 

schedule, the makespan (MK) can be computed as follows [18]: 

𝑀𝐾(𝑍) = max
𝑗∈1,2,…,𝑚

∑ 𝐸𝐶𝑇𝑘,𝑗
𝑛
𝑘=1         (2) 

At this stage, the task scheduling problem can be formally expressed as follows: 

𝑓(𝑍) = 𝑚𝑖𝑛𝑀𝐾(𝑍) = min max
𝑗∈1,2,…,𝑚

∑ 𝐸𝐶𝑇𝑘,𝑗
𝑛
𝑘=1       (3) 

3.2. Gorilla Troops Optimizer 

The GTO algorithm is a nature-inspired optimization technique rooted in the social behaviour of gorilla troops. 

This algorithm draws inspiration from the way gorillas coordinate and cooperate to solve problems, find food, and 

navigate their environment. Gorilla Troops Optimization is a heuristic search algorithm designed for solving 

complex optimization problems, particularly those that involve constraints and multiple objectives. The core 

concept of GTO lies in the collaboration and communication among the individuals in a gorilla troop. Each 

individual (representing a potential solution) communicates with others to collectively find the best solutions. 

This concept is adapted to optimization problems where a population of potential solutions collaboratively works 

to explore the search space and find optimal or near-optimal solutions [19]. In the context of TS in FC, the GTO 

algorithm can be applied to solve the challenging problem of allocating tasks to fog nodes in a manner that 

optimizes various objectives, such as minimizing execution time, energy consumption, and latency while 

satisfying QoS constraints. The GTO algorithm draws inspiration from the collaborative and communicative 

behaviours of gorilla troops. Much like gorillas working together to solve problems and share knowledge, GTO 

employs a population of potential solutions that collaborate and share information to discover the optimal TS 

arrangement in the FC environment collectively. Communication, a cornerstone of gorilla troop dynamics, is 

mirrored in GTO as solutions exchange information, such as the quality of their schedules, through a designated 

mechanism. GTO's essence lies in the exploration of the solution space, similar to gorillas exploring their 

environment to find resources. Solutions adjust their positions within this space, striving to find optimal or near-

optimal TS arrangements. Adaptability is key for both gorillas and GTO solutions; the latter adjust their positions 

based on information from peers and the TS problem's objectives and constraints. Finally, cooperation, 

fundamental to gorilla troops' success, is mirrored in GTO as solutions cooperate by sharing knowledge and 

collectively enhancing the TS solution, effectively optimizing FC task allocation. In the exploration phase of GTO, 

each member is considered a potential solution, with the best solution termed the "silverback gorilla." The 

exploration strategies include moving to unfamiliar regions, balancing exploration, and exploitation by 

minimizing search space among gorillas, and moving to known areas. The choice of strategy depends on a random 

value, rand, and a parameter, p. If rand < p, migration to an uncertain location is preferred. If rand is greater than 

or equal to 0.5, a mobility technique involving other gorillas was chosen, while rand lesser than 0.5 results in 

moving towards the designated place. These strategies are represented numerically in Equation (4). 

𝐺𝑋(𝑡 + 1) = ((𝑈𝐿 − 𝐿𝐿) × 𝑟1 + 𝐿𝐿, 𝑟𝑎𝑛𝑑 < 𝑝(𝑟2 − 𝐶) × 𝑋𝑟(𝑡) + 𝐿 × 𝐻, 𝑟𝑎𝑛𝑑 ≥ 0.5 𝑋(𝑖) − 𝐿 × (𝐿 ×

(𝑋(𝑡) − 𝐺𝑋𝑟(𝑡)) + 𝑟3 × (𝑋(𝑡) − 𝐺𝑋𝑟(𝑡))) , 𝑟𝑎𝑛𝑑 < 0.5  (4) 

The equation involves two gorilla positions, 𝑋(𝑡) and 𝐺𝑋(𝑡 + 1), both determined in the following iteration t. 

Rand, 𝑟1 𝑡𝑜 𝑟3 are values within the [0, 1] scale. The parameter p signifies the likelihood of selecting the movement 

scheme for the unknown region. 𝑋𝑟 represents one randomly chosen gorilla while 𝐺𝑋𝑟  represents a group of 

gorillas in a designated zone, also selected randomly. UL and LL denote the upper and lower variable boundaries, 

respectively. The variables C, H, and L are defined numerically by equations (5), (7), and (8), respectively. 

𝐶 = 𝐹 × (−1)                        (5) 

𝐹 = cos(2 × 𝑟4) + 1          (6) 

𝐿 = 𝐶 × 𝑙           (7) 

𝐻 = 𝑍 × 𝑋(𝑡)                       (8) 

𝑍 = [−𝐶, 𝐶]           (9) 
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In this context, t signifies the iteration count, while 𝑟4 is a randomly generated value within the [0, 1] range. 

Additionally, the term 'l' represents a random value within the range [-1, 1]. Following the exploration step, the 

objective values for 𝐺𝑋 are computed. If 𝐺𝑋(𝑡) has a lower cost than the current solution 𝑋(𝑡), 𝐺𝑋(𝑡) becomes 

the preferred alternative over 𝑋(𝑡) (the silverback). In exploitation process, two strategies are employed: 

monitoring the silverback and competing for the attention of mature females. The choice between these strategies 

is determined by comparing the outputs of the equation (6) with W. The silverback is considered the leader of the 

gorilla group, responsible for making decisions and guiding the swarm towards resources. This technique is 

employed when C≥W. To describe this behaviour mathematically, Equation (10) is used. 

𝐺𝑋(𝑡 + 1) = 𝐿 × 𝑀 × (𝑋(𝑡) − 𝑋𝑠𝑏) + 𝑋(𝑡)      (10) 

The position vector of a gorilla is represented by 𝑋(𝑡), and the position vector of the silverback is represented as 

𝑋𝑠𝑏. Additionally, in the Equation 𝑟4, the variable M is defined in the following equation: 

𝑀 = (|(
1

𝑁
) ∑ 𝐺𝑋𝑖(𝑡)𝑁

𝑖=1 |
𝑔

)
(1/𝑔)

, 𝑔 = 2𝑙        (11) 

More precisely, every candidate gorilla's vector location at t was denoted as 𝐺𝑋𝑖(𝑡), with N representing the total 

number of gorillas. 

In the case where C < W, the subsequent approach in the exploitation phase involves competing for the attention 

of mature females. Like the behaviour of young gorillas entering adolescence and competing for the favour of 

mature females, this behaviour can be mathematically represented using Equation (12) as a foundation. 

𝐺𝑋(𝑖) = 𝑋𝑠𝑏 − (𝑋𝑠𝑏 × 𝑄 − 𝑋(𝑡) × 𝑄) × 𝐴       (12) 

𝑄 = 2 × 𝑟5 − 1          (13) 

𝐴 = 𝛽 × 𝐸           (14) 

𝐸 = {𝑁1 𝑟𝑎𝑛𝑑 ≥ 0.5  𝑁2 𝑟𝑎𝑛𝑑 < 0.5       (15) 

In Equation (13), Q represents impact force, and 𝑟5 stands for random values in the [0, 1] range. Equation (14) 

calculates parameter A, reflecting the intensity of the violence phase, with β preset. 'E' simulates the disruptive 

effect in Equation (15). At the end of the exploitation phase, 𝐺𝑋's objective rate is evaluated, and if 𝐺𝑋(𝑡) has a 

lower rate than 𝑋(𝑡), 𝐺𝑋(𝑡) is selected as the optimal solution over 𝑋(𝑡). To calculate individual fitness, a 

threshold is essential, as outlined in Equation (16), 

𝐵𝑋𝑖𝑗 = {1 𝑖𝑓 𝑋𝑖𝑗 > 0.50, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0       (16) 

Each search agent, denoted as i, has a dimension value at dimension j represented as 𝑋𝑖𝑗. Subsequently, the 

algorithm employs Equation (17) to compute the fitness of each gorilla as follows. 

𝑓𝑖𝑡𝑖 = 𝛼 ×
|𝐵𝑋𝑖|

𝐷
          (17) 

In this context, α falls within the [0, 1] range, and D represents the dimension of the input. The best choice is 

determined based on the smallest fitness values. The updating phase is iterated until the specified condition is met. 

Eventually, the GTO algorithm yields the optimal solution. The following outlines the iterative process of the 

GTO algorithm to find the best solution. The GTO algorithm follows these steps [20]: 

Initialization: Initialize the gorillas and adjust parameters (Max_iter, Popsize, β, p) 

Compute initial fitness functions as in Equation (17) 

If the iteration count (t) is less than or equal to Max_iter: 

Update comparison parameters C and L as per equations (8) and (7) 

For each gorilla (i) in the population (up to Popsize): 

Update the gorilla's position using Equation (4) 

Compute the fitness as in Equation (17), and if it is better than prior fitness, update it. 

Set the silverback gorilla as the best solution (i=1) 

If C is greater than or equal to W: 

Update the position following Equation (10) 

Else 

Update the position as per Equation (13) 

Compute the fitness as in Equation (17), and if it is better than prior fitness, update it. 

Return the silverback gorilla as the best solution. 
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Figure 3. Workflow of GTO 

3.3. Skip Salp Swarm Algorithm 

The SSSA is a swarm intelligent optimization approach that combines the Salp Swarm Algorithm (SSA) with a 

skipping mechanism. SSA itself is inspired by the behaviour of salps, a type of marine organism known for their 

coordinated and efficient movement in a swarm. In SSA, individuals emulate the swarming behaviour of salps to 

collectively explore a solution space and find NP or optimal solutions. The SSSA introduces a skipping 

mechanism, which enhances the algorithm's exploration and exploitation abilities, making it particularly useful 

for solving complex optimization problems. The core concept of the SSSA algorithm, particularly in the context 

of TS in FC, involves a two-fold approach [21]: 

 Swarming Behavior: The SSA component of SSSA mimics the cooperative and swarming behaviour observed 

in salps. In this phase, individuals (representing potential solutions) work together in a coordinated manner 

to explore the solution space efficiently. They communicate, exchange information, and collectively improve 

the solutions. 

 Skipping Mechanism: The novel aspect of SSSA is the introduction of a skipping mechanism. This 

mechanism allows individuals to occasionally skip their current positions in the solution space and jump to 

new locations. This skipping behaviour enhances the algorithm's exploration ability by introducing 

randomness and diversity into the search process. 

In the proposed research, the SSSA algorithm is seamlessly integrated with GTO to augment its exploitation 

capabilities in the context of TS for FC environments. This integration brings forth several critical contributions: 

firstly, the SSSA's skipping mechanism injects randomness into the search processes, enriching exploration of an 

extensive solution space, which is particularly valuable in the intricate field of FC task scheduling. Secondly, it 

enhances GTO's exploitation ability by introducing a more robust strategy to fine-tune solutions. The integration 
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of SSSA with GTO yields a powerful hybrid algorithm that combines the collaborative strengths of GTO with the 

advanced exploration and exploitation capabilities of SSSA. The primary goal is to optimize FC task scheduling, 

efficiently allocating tasks to fog nodes while simultaneously addressing multiple objectives like minimizing 

makespan, execution time and throughput. This approach aims to effectively navigate the intricacies of FC task 

scheduling, ultimately enhancing its efficiency and performance. The salps are randomly initialized in the first 

iteration. The chain leader repositions based on food positions in each dimension using Eq. 18, where 𝐹𝑗 represents 

the food location in jth dimension, and 𝑧 is random number in [0, 1], while 𝑙𝑏𝑗  𝑎𝑛𝑑 𝑢𝑏𝑗 denote the lower and upper 

bounds. The parameters control the balance between exploration and exploitation. 

𝑠𝑗
𝑖 = {

𝐹𝑗 + 𝑧 ∗ ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟1 + 𝑙𝑏𝑗) 𝑟2 ≥ 0.5

𝐹𝑗 − 𝑧 ∗ ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟1 + 𝑙𝑏𝑗) 𝑟2 < 0.5
      (18) 

In the original SSA, the entire chain follows a single leader, limiting information sharing and hindering 

exploitation. There is also a lack of exploration, as salps often follow their predecessors, leading to premature 

clustering and reduced exploration. To address the limited exploration seen in salps, the GWO introduced the 

encircling parameter in both head and following location updated equation. The encircling parameter modified, 

denoted as A and determined by Equation (19) involving z among 0 and 1, helps enhance exploration. The updated 

head location equation for all salps (ith) with encircling parameters is given in Equation (20). 

𝐴 =
2∗𝑧∗𝑟3−𝑧

2
+ 1          (19) 

𝑠𝑗
𝑖 = {

𝐴 ∗ 𝐹𝑗 + 𝑧 ∗ ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟1 + 𝑙𝑏𝑗) 𝑟2 ≥ 0.5

𝐴 ∗ 𝐹𝑗 − 𝑧 ∗ ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟1 + 𝑙𝑏𝑗) 𝑟2 < 0.5
     (20) 

To enhance information flow and exploration, Skip connections, inspired by neural networks, are introduced in 

the SSSA. These connections resemble those in neural networks and transmit information from the food location 

to internal salps, ensuring better information dissemination. In this approach, odd-numbered salps were upgraded 

utilizing a new head location equation (20), while even-numbered salps were upgraded with a follower location 

modified equation (21), incorporating an encircling parameter and dual neighbour guidance for exploration [22]. 

𝑐𝑒𝑛𝑡𝑗
𝑖 =

1

2
(𝐴 ∗ 𝑠𝑗

𝑖−1 + 𝐴 ∗ 𝑠𝑗
𝑖+1)

𝑣𝑒𝑙𝑗
𝑖 = 𝑎𝑏𝑠(𝑐𝑒𝑛𝑡𝑗

𝑖 + 𝑠𝑗
𝑖)

𝑠𝑗
𝑖 = 𝑐𝑒𝑛𝑡𝑗

𝑖 − 𝑣𝑒𝑙𝑗
𝑖

} 𝑖%2 == 0      (21) 

𝐹𝑖𝑡 = 𝜑 × 𝛿(𝐸) + 𝛼 ×
|𝑘|

|𝐾|
         (22) 

The fitness function of the SSSA algorithm is represented in equation (22), where the binary value of the threshold 

value is 0.5. The k values are given as 5 and 10 population agents. The distance between the salp and centroid was 

computed as the velocity according to which the newer position was determined.  

Initialize each salp within the specified bounds randomly. 

While the current iteration is less than or equal to the maximum iterations: 

Evaluate the fitness of each salp. 

Identify the salp with the best fitness as the "Food." 

For each salp (𝑠𝑗
𝑖) in the swarm: 

If 𝑠𝑗
𝑖 's index (i) is odd (i % 2 == 1), update its head position using Equation 4. 

For each salp (𝑠𝑗
𝑖) in the swarm: 

If 𝑠𝑗
𝑖 is the last salp, update its position using Equation 20. 

Otherwise, if i is even (i % 2 == 0) and not the last salp, compute the velocity, centroid, and update follower 

position using Equation 21. 

Reposition salps that are outside the specified bounds. 

Return the best fitness value (F). 

3.4. Proposed TS Model 

This section introduces the task scheduler developed for an FC environment, which utilizes the GTO algorithm 

with SSSA. In this model, solutions are updated competitively during the exploitation phase using both SSSA and 

GTO operators. However, during the exploration phase, only GTO operators are employed to enhance the TS 

process. The GTO-SSSA model for addressing the TS problem commences with an initialization phase. Here, the 
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solutions are initially defined, and their representation is established. These solutions are assigned initial values 

and are transformed into integer solutions. Subsequently, each solution's quality is evaluated based on its fitness, 

as denoted in (Equation 3). The next step involves the improvement of these solutions, which occurs during both 

the exploration and exploitation phases. During the exploration phase, solution updates are carried out using GTO 

operators. In the subsequent phase, updates are determined through competition between GTO and SSSA 

operators. This enhancing process the solution continues till the termination criteria were met. The initial step in 

the GTO-SSSA model involves transforming the randomly generated population Xi (i = 1, 2, ..., n) to adapt it for 

the problem of TS within the FC. This transformation was necessary for modifying the GTO's behaviour and 

enable it to address discrete problems, as TS in an FC environment is inherently an integer problem. 

𝑋𝑖𝑗 = 𝑓𝑙 (𝐿𝑏𝑖𝑗 + 𝛼 × (𝑈𝑏𝑖𝑗 − 𝐿𝑏𝑖𝑗)) , 𝛼 ∈ [0,1], 𝑗 = 1,2, . . . , 𝑛    (23) 

Equation (23) defines the limits of the search domain, where 𝐿𝑏 = 1 and 𝑈𝑏 = 𝑚. The function 𝑓𝑙 is used for 

converting real numbers into integers in this context. In the updating stage, the GTO-SSSA initiates by identifying 

the solutions with the small makespan values and designating it as best solutions. Subsequently, the remaining 

solutions are updated based on their respective behaviours. However, the other solutions aimed at uncovering the 

best positions within reliable regions were upgraded utilizing either GTO or SSSA operators. This selection is 

made based on the probability (P) assigned to each of these solutions, as defined below. 

𝑃 =
𝐹𝑖

∑ 𝐹𝑖
𝑁
𝑖=1

           (24) 

The solution Xi undergoes updates according to the equation provided in (16). In this equation, the variable rs 

plays a pivotal role in managing the update process, determining whether GTO or SSSA operators are applied. 

While 𝑟𝑠 could be set as the fixed points, the approach presents challenges in determining the most suitable value. 

Therefore, the formula presented below is used to define its value. 

𝑋𝑖 = {
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑜𝑓 𝐺𝑇𝑂                𝑃 > 𝑟𝑠

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑜𝑓 𝑆𝑆𝑆𝐴      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (25) 

𝑟𝑠 = min(𝑃) + 𝑟𝑎𝑛𝑑 × (𝑚𝑎𝑥(𝑃) − 𝑚𝑖𝑛(𝑃)), 𝑟𝑎𝑛𝑑 ∈ [0,1]    (26) 

The preceding steps concerning the update of achieved solutions were iteratively reiterated till the specified stop 

criteria are met. 

Initialize the population of solutions 𝑋𝑖 (i = 1 to N) randomly 

Convert the solutions into integer representations 

Compute the fitness of every solution based on the objective functions 

Repeat until termination criteria are met: 

  for each solution 𝑋𝑖: 

    if exploration_phase: 

      Update 𝑋𝑖 using GTO operators 

    else: 

      Determine the competition probability P for 𝑋𝑖   

    if P < threshold:  # Choose GTO operator 

      Update 𝑋𝑖 using GTO operators 

    else:  # Choose the SSSA operator 

      Update 𝑋𝑖 using SSSA operators 

  Identify the best solution with the smallest makespan 

    Update the exploration_phase 

Return the best solution 

4. Experimental Analysis & Discussion 

This section covers the details of the experimental setup, including the tests conducted, result interpretation, and 

data analysis. The evaluations and comparison with existing TS models are carried out utilizing MATLAB 

R2017a. The simulations were performed on a personal computer with an Intel Core i7-11700T processor clocked 

at 4.60GHz and 8 GB of memory. The operating system used was Windows 10, 64-bit. The experimental 

environment employed for all tests included a cloud-fog setup comprising four host machines, two data centres, 

and 25 virtual machines (VMs). The experiments in this section are aimed at assessing and comparing the 

performances of the GTO-SSSA model with existing solutions, providing insights into its effectiveness and 

efficiency within the specified cloud-fog environment. 
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Table 1: Synthetic Dataset Description 

Parameter Range/Size 

File size (300, 600) MB 

Length of the task (300, 600) MI 

Number of tasks (200, 1000) 

Output size (300, 600) MB 

The experiments exclusively employed a synthetic dataset to assess the effectiveness of the GTO-SSSA model we 

proposed. This synthetic dataset was designed for the evaluation, and it consisted of 1000 tasks. These tasks were 

produced utilizing the uniform distributions, where the task lengths varied between 1000 and 20,000 MI. It is 

important to note that these tasks were independent and non-pre-emptive, meaning they could not be interrupted 

once started. This dataset allowed us to evaluate the performance and robustness of the scheduling model. 

4.1. Performance Metrics 

In computing environments, makespan serves as a fundamental performance metric employed to evaluate the 

schedule quality. Makespan can be defined as completion time of the final tasks within the schedule. Its calculation 

is based on Equation (2). This metric plays a crucial role in evaluating how efficiently tasks are processed within 

a given computing environment. The Performance Improvement Ratio (PIR) was a parameter utilized to quantify 

the performance enhancement percentage achieved by the proposed model when compared to the existing models. 

PIR is calculated using Equation (27). This metric enables a clear assessment of the extent to which the proposed 

method outperforms existing solutions, providing valuable insights into the efficiency of the approach. 

𝑃𝐼𝑅 =
(𝑍𝑐−𝑍𝑝)

𝑍𝑝
× 100%        (27) 

In this equation, 𝑍𝑝 represents the fitness value achieved by the proposed GTO-SSSA model, while 𝑍𝑐 denotes 

the fitness value achieved by one of the compared models. This formula is instrumental in quantifying the 

performance improvement rate (PIR) by comparing the fitness values obtained through the proposed approach 

with those from existing algorithms. It provides a clear measure of how much better the proposed technique 

performs in relation to the comparative methods. 

Throughput is a metric that quantifies the total number of tasks completed within a specified timeframe and is 

essential for evaluating the efficiency of scheduling algorithms. An effective scheduling algorithm is expected to 

enhance the system's throughput, which can be determined using Equation (28).  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = ∑ 𝐸𝐶𝑇(𝑡𝑖)𝑡𝑖∈𝑇         (28) 

In this equation, the notation 𝐸𝐶𝑇(𝑡𝑖) represents the execution time of the ith task. This metric serves as a valuable 

measure of algorithm performance, reflecting how efficiently tasks are processed and completed within the 

system. Table 2 presents a comprehensive comparison of makespan results for various TS models, including ARO, 

MFO, GTO, SACO, and the proposed GTO-SSSA model across different task quantities. The makespan values, 

representing the time taken to complete all tasks, are evaluated for varying task loads of 200, 400, 600, 800, and 

1000. 

Table 2: Comparison of Makespan Results 

Models 
Tasks 

200 400 600 800 1000 

ARO 41.39 83.62 117.49 152.99 203.41 

MFO 39.46 82.78 115.77 149.08 200.15 

GTO 38.13 79.25 113.36 145.29 192.90 

SACO 36.26 73.49 109.94 143.10 188.32 

GTO-SSSA 34.01 71.24 108.06 141.85 177.63 
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Figure 4. Graphical Plot of Makespan Comparison 

ARO exhibits makespan values that range from 41.39 for 200 tasks to 203.41 for 1000 tasks. As the task quantity 

increases, there is a substantial increase in makespan, indicating that ARO's performance degrades with higher 

workloads. The difference in makespan between ARO and GTO-SSSA is significant, with the latter consistently 

showing much lower values. MFO offers improved makespan values compared to ARO. However, the makespan 

ranges from 39.46 for 200 tasks to 200.15 for 1000 tasks. Like ARO, MFO also experiences an increase in 

makespan as the number of tasks rises. The difference between MFO and GTO-SSSA remains considerable in 

terms of TS efficiency. GTO performs better than both ARO and MFO, with makespan values ranging from 38.13 

for 200 tasks to 192.90 for 1000 tasks. While GTO exhibits improved efficiency, there is still a notable gap 

between its makespan values and those of GTO-SSSA. SACO further improves TS, with makespan values ranging 

from 36.26 for 200 tasks to 188.32 for 1000 tasks. Although SACO offers enhanced efficiency compared to ARO 

and MFO, it still lags behind the GTO-SSSA model. The proposed GTO-SSSA model consistently outperforms 

the other models, offering the lowest makespan values across all task quantities. Its makespan ranges from 34.01 

for 200 tasks to 177.63 for 1000 tasks. The values demonstrate that GTO-SSSA excels in TS efficiency, providing 

significantly shorter task completion times compared to the other models. 

Table 3: Comparison of Throughput Results 

Models 
Tasks 

200 400 600 800 1000 

ARO 979 1925 2907 3702 4815 

MFO 951 1897 2640 3549 4501 

GTO 934 1805 2488 3503 4319 

SACO 876 1660 2328 3198 4176 

GTO-SSSA 801 1586 2291 2950 3824 

 

Table 3 presents a comprehensive comparison of the throughput results achieved by different models for varying 

numbers of tasks. The throughput results for ARO indicate that it delivers throughput values ranging from 979 for 

200 tasks to 4815 for 1000 tasks. As the number of tasks increases, there is a substantial improvement in 

throughput, showcasing ARO's ability to handle larger workloads efficiently. MFO's throughput results are 

competitive, with values spanning from 951 for 200 tasks to 4501 for 1000 tasks. Similar to ARO, MFO 

demonstrates improved throughput as the task quantity increases, underlining its effectiveness for larger 

workloads. GTO consistently delivers solid throughput values, ranging from 934 for 200 tasks to 4319 for 1000 

tasks. These results highlight the model's reliability and efficiency in achieving high throughput across various 

task quantities. SACO showcases enhanced throughput performance, with values extending from 876 for 200 

tasks to 4176 for 1000 tasks. The model's throughput consistently improves with larger workloads, emphasizing 

its competence in handling increased tasks. 
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Figure 5. Graphical Plot of Throughput Comparison 

The proposed GTO-SSSA model excels in providing substantial throughput improvement, surpassing the other 

models. Its throughput ranges from 801 for 200 tasks to 3824 for 1000 tasks. These results underscore GTO-

SSSA's ability to efficiently manage tasks efficiently, yielding significantly improved throughput, particularly for 

larger task quantities. 

Table 4: Comparison of Performance Improvement Rate Results 

Models 
Tasks 

200 400 600 800 1000 

ARO 17.83 14.80 8.02 7.28 12.67 

MFO 13.81 13.94 6.65 4.84 11.25 

GTO 10.80 10.10 4.67 2.36 7.91 

SACO 6.20 3.06 1.71 0.87 5.67 

 

 

Figure 6. Graphical Plot of PIR Comparison 

Table 4 provides a comprehensive comparison of the performance improvement rates of the proposed GTO-SSSA 

model over the compared models (ARO, MFO, GTO, and SACO) across different task quantities (200, 400, 600, 

800, and 1000) in the context of fog computing TS. The performance improvement rate represents the extent to 

which GTO-SSSA outperforms the compared models. For ARO, GTO-SSSA exhibits substantial improvements, 

with performance improvement rates ranging from 12.67% for 1000 tasks to a significant 17.83% for 200 tasks. 

This demonstrates that GTO-SSSA significantly enhances the scheduling efficiency of ARO across various task 

quantities. In comparison to MFO, GTO-SSSA maintains consistent improvements. The performance 

improvement rates range from 11.25% for 1000 tasks to 13.94% for 400 tasks. GTO-SSSA consistently shows its 
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efficiency in reducing makespan compared to MFO. Even when compared to GTO, which is itself an efficient 

model, GTO-SSSA achieves notable improvements. The performance improvement rate varies from 7.91% for 

1000 tasks to 10.80% for 200 tasks, indicating that GTO-SSSA excels in optimizing TS. SACO, while an improved 

model, experiences enhancements from GTO-SSSA as well. The performance improvement rates range from 

5.67% for 1000 tasks to 6.20% for 200 tasks. GTO-SSSA consistently shows its efficiency over SACO in reducing 

makespan across different task quantities. Overall, this emphasizes the superiority and efficiency of the GTO-

SSSA model in enhancing TS performance over the compared models across varying task quantities in FC 

environments. It underlines the significant benefits of the GTO-SSSA approach in achieving efficient and 

optimized TS solutions. 

5. Conclusion 

The research introduced the GTO-SSSA, a novel TS model designed for FC environments. This model capitalizes 

on the collaborative nature of the GTO algorithm while incorporating enhanced exploration and exploitation 

capabilities via the SSSA algorithm's skipping mechanism. The primary objective of GTO-SSSA is to tackle the 

intricate challenges of TS in FC effectively. This includes the efficient allocation of tasks to fog nodes, considering 

multiple objectives such as minimizing makespan, execution time, energy consumption, and latency. A 

comprehensive evaluation and comparative analysis involving existing models (ARO, MFO, GTO, SACO) 

yielded several notable findings. The introduction of the GTO-SSSA model in FC demonstrates improved 

efficiency, consistently surpassing compared models across various task quantities with significantly reduced 

makespan values. Performance improvement rates for GTO-SSSA over other models show substantial gains in 

TS efficiency, ranging from 0.87% to 17.83%. The model's scalability is noteworthy, maintaining efficiency even 

with an increased number of tasks essential for dynamic IoT applications. By balancing multiple objectives such 

as makespan, execution time, and throughput, GTO-SSSA enhances the quality of service for FC applications. 

Future research can focus on implementing and evaluating the GTO-SSSA model in practical FC scenarios and 

further refining it through parameter optimization and additional quality-of-service criteria. 
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