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Abstract 

Cardiovascular diseases (CVD) stand as the leading cause of global mortality, claiming millions of 

lives annually. An electrocardiogram (ECG) records the heart's electrical activity based on the Internet 

of Things (IoT), crucial in detecting cardiac arrhythmias (CA), characterized by irregular heart rates 

and rhythms. Signals from the MIT-BIH Arrhythmia Physio net database are analyzed. This chapter 

aims to propose a hybrid approach merging Genetic Algorithm-Support Vector Machine (GSVM) and 

Particle Swarm Optimization-Support Vector Machine (PSVM) for CA classification. The study 

introduces an algorithm for categorizing ECG beats into six groups using Independent Component 

Analysis (ICA)-derived features. Optimal SVM settings are determined using Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) on ICA features computed via non-parametric power 

spectral estimation. The research delves into the origins and methodologies of GA and PSO. 

Simulation results comparing GSVM and PSVM are presented, emphasizing PSVM's superior 

performance in accuracy, sensitivity, specificity, and positive predictivity. Detailed performance 

metrics, including Sensitivity, Specificity, Positive Predictivity, and Accuracy percentages, are 

scrutinized and compared against the top classifier. The findings endorse PSVM's superiority over 

GSVM, indicating enhanced performance across multiple evaluation criteria. 
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1. Introduction 

Electrocardiography, often known as an electrocardiogram, is a technique for recording the heart's 

electrical activity over time by attaching electrodes to the skin at certain locations. With the use of 

these electrodes, the electrophysiological pattern of depolarization and repolarization in the heart 

muscle that occurs with each heartbeat may be detected [1]. The usual reason for doing so is to 

perceive heart complications. 
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The electric capacity of the heart is then measured from 12 separate vantage points ("leads") and 

recorded over some time (often 10 seconds). In this way, the basic significance and course of electrical 

depolarization of the heart are captured at each moment in a very small number of phases of the cardiac 

cycle [2]. 

Figure 1 depicts the anatomy of the heart, which consists of the left atrium, the right atrium, the left 

ventricle, and the right atrium, as well as the atrioventricular node and the sinoatrial node. The atria 

(upper chambers) are labelled as left and right, whereas the ventricles (lower chambers) are labelled 

as left and right [3]. Fibrous, non-conductive tissue connects the atria to the ventricles, creating an 

electrical barrier between the two chambers of the heart. The right atrium and right ventricle work as 

a pump to move blood to the lungs. The superior and inferior vena cava are bigger veins that carry 

oxygen-poor blood away from the heart and into the right atrium [4]. The right ventricle can contract 

with more force once the right atrium contracts, stretching it and forcing blood into it. The next step 

in completing oxygenation is the pumping of blood to the lungs by the right ventricles. The same holds 

for the return of oxygen-rich blood from the lungs to the rest of the body; this process involves the 

pulmonary veins, the left atrium, and the left ventricle [5]. 

 

Figure 1: The Human Heart Anatomy [Google]. 

By keeping tabs on the patient, an electrocardiogram (ECG) can be quickly and painlessly analyzed. 

The patient's heart rate is monitored using ECG equipment while they are in touch with a small number 

of leads [6]. With its strong classification skills, Support Vector Machine (SVM) is perfect for 

identifying intricate patterns in arrhythmia data. When it comes to feature selection and model 

optimization, SVM is at its best when optimized with algorithms like Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). While PSO effectively traverses parameter optimization by 

imitating social behaviour, GA explores a wide solution space using methods inspired by evolution. 

Arrhythmia detection relies on early diagnosis and intervention in cardiovascular disorders, which can 

save lives and improve patient outcomes. Their synergy with SVM guarantees superior classification 

accuracy, sensitivity, and specificity in this area. 

We can identify the type of cardiac arrhythmias occurring in the patient by looking for specific signs. 

Different arrhythmias can be studied using this method because the P wave, QRS complex, and T 

wave components of the signal might vary [7]. The magnitude of the cardiac signal differential is 

determined by the wave's breadth and height. By dynamically selecting the characteristics of the 

subset, the Genetic Algorithm-Support Vector Machine (GSVM) classifier significantly impacts the 

ECG signal categorization, which in turn optimizes the SVM classifier [8]. The classification method 
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prepares data with the discrete wavelet transform, reduces dimensionality with principal component 

analysis (PCA), and extracts features with independent component analysis utilizing non-parametric 

PSD estimation [9]. 

The classifier is allowed to take in these extracted features. Classifier accuracy is then calculated and 

used to verify the chromosome's fitness. Particle swarm optimization, or PSO for short, is a stochastic 

optimization method that takes its cues from collective behavior patterns, such as those seen in a flock 

of birds, a school of fish, or a community of humans [10]. For each cycle of SVM-trained values, PSO 

will establish the updated position and velocity of each particle in an iterative method. 

 

 

2. Related Work 

Many people have ventricular and atrial arrhythmias, which are among the most dangerous 

consequences of cardiovascular illness. These arrhythmias can cause irregular heartbeats [11]. Several 

authors have argued that ventricular arrhythmias such as flutter and fibrillation are fatal disorders that 

cause sudden cardiac arrest. 

Due to its minute variation in amplitude and time duration, researchers have indicated that it is very 

difficult to extract and analyze the secret data present in ECG signals. As a result, recommendations 

are made for diagnoses that can be aided by software, and clinicians in subsequent therapy [12] can 

use the resulting data. The authors propose a classification-learning algorithm for identifying six 

different categories of ECG beats. The algorithm achieves an 86% sensitivity rate for APC beats and 

a 97% sensitivity rate for the other five types of beats. The research team has also suggested a machine 

learning method that can classify 5 distinct types of ECG beats with an accuracy of 93.97 percent. The 

investigators report an accuracy of 88.84% when applying the Particle Swarm Optimization and 

Wavelet Transform methods to the classification of six distinct ECG arrhythmias [13]. Consuming a 

neuro-fuzzy methodology and the Hermite Coefficients of beats in the ECG signal, the researchers 

were able to attain a 96% classification accuracy. The Gaussian Mixture Model (GMM) was used to 

classify two distinct abnormality states in the ECG data, with an accuracy of greater than 94%. 

Furthermore, the scientists have presented a wavelet transform and PCA-based SVM classifier model 

for ECGs, which research has revealed can differentiate between healthy and abnormal heartbeats 

with an accuracy of 95.6% [14].  

The purpose of preprocessing is to improve the overall quality of the ECG for more accurate analysis 

and assessment. The ECG could be severely disrupted by noise, making it impossible to rely on the 

original signals for accurate measurements [15]. Most noise can be broken down into three broad 

categories based on frequency. 

The elimination of strife like baseline wander and power line interference requires a narrowband filter, 

hence this design has received a lot of focus. The high spectrum overlap between the ECG and muscle 

noise makes removing the noise caused by muscular activity a much more challenging filtering 

challenge [16-18]. When necessary, approaches that take advantage of the fact that the ECG is a 

recurrent signal can be used to minimize muscle noise in the ECG. The frequency of a standard ECG 

signal varies between 0.05 and 100 hertz. The eradication of artifacts is a vital stage in ECG signal 

treatment [19-22]. If there are artifacts present in the data from the ECG, it will be easier for the 

specialist to diagnose the diseases. Any instrument that is intended to record ECG signals should strive 

to do so with as little background noise as is humanly practical. There are a variety of various 

approaches that can be taken to extract the ECG parameters from a noisy ECG signal [23]. 

 The authors developed a technique utilizing Hidden Markov Models to analyze cardiac arrhythmias. 

This method includes approaches that examine ventricular arrhythmias by assessing the QRS complex 

and R-R durations [24-25]. Hidden Markov modeling aims to integrate the structural and statistical 

details of the ECG signal into a distinct parametric model. Ambulatory ECG recordings often feature 

low amplitude P waves, posing detection challenges. Hidden Markov modeling effectively addresses 

this issue [26]. 
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3. Objective of the Research Work 

This research paper will center on identifying and suggesting a hybrid approach, combining Genetic 

Algorithm-Support Vector Machine (GSVM) and Particle Swarm Optimization-Support Vector 

Machine (PSVM), for the classification of cardiac arrhythmias. 

4. Research Question for the Research Work 

• How effective are the hybrid Genetic Algorithm-Support Vector Machine (GSVM) and 

Particle Swarm Optimization-Support Vector Machine (PSVM) in classifying cardiac 

arrhythmias?  

• What are the optimal parameters for achieving accurate classification results? 

5. Goals of the Research Work 

Develop a hybrid classification approach for cardiac arrhythmias leveraging GSVM and PSVM to 

enhance accuracy and efficiency. 

6. Expected Contributions of the Research Work 

Contribute a novel method for accurate cardiac arrhythmia classification, improving patient diagnosis 

and treatment outcomes. 

7. The Proposed Work 

In this analysis, we take advantage of the features generated by ICA. As was previously noted, the 

SVM classifier is used because it has proven effective in a variety of classification situations. One of 

the supporting features of the suggested method is the use of Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) to find the best possible settings for the SVM's parameters. High 

optimization is required for the penalty parameter C of the support vector machine (SVM), which is 

expected to be a positive integer, and the kernel parameter of the Gaussian radial basis function 

(GRBF), which is expected to be a positive real number. It is being analyzed how well the proposed 

ICAs built with non-parametric PSD estimation features extracted using the Genetic Algorithm-

Support Vector Machine (GSVM) method and the ICAs built with non-parametric PSD estimation 

features extracted using the Particle Swarm Optimization-Support Vector Machine (PSVM) method 

perform. 

In the realm of machine learning, the Support Vector Machine is a supervised technique. Specifically, 

SVM accomplishes cataloguing tasks by building Optimal Separating Hyper-Planes (OSH). The OSH 

widens the gap between the two adjacent data points that fall into distinct categories. Figure 2 depicts 

the results of using SVM to divide a dataset into two classes. If the hyperplane's margin grows, the 

ensuing inequality will be proven correct for all and all input data. 

 

Figure 2: Divider of two classes by SVM. 

The ECG data comes from the arrhythmia database at MIT-BIH. Denoising, detecting QRS peaks 

with DWT, normalizing; performing dimensionality reduction with PCA, and extracting features with 

Positive class 

Negative class 
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ICA are all part of the preprocessing stage. Later stages of the GSVM approach, including its structure 

and formulation, are shown and explained as well. GSVM's DNA is made up of the values of the 

kernel parameter and the C parameter. Therefore, GSVM should have two genes, one for each 

parameter, on its chromosome. 

The genetic algorithm starts with a population that all have 15 chromosomes. Continuing along the 

chromosome, the parameter represents the GRBF Kernel scaling factor, and it is assumed to be 

positive. When the parameter is used to select a random chromosome, the value of the chromosome's 

C parameter is sent along to SVM classifiers so that it can be used to make predictions. After that, the 

classifier accuracy is calculated and confirmed as the chromosome's fitness value. 

A. Algorithm 

 

1. Start: Receive results from ITRA.  

 

2. Collect Outputs: Gather outputs from ITRA. 

 

3. Apply Weights to Scores: Integrate with  

 
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡 × 𝑊𝑒𝑖𝑔ℎ𝑡.                             (1)  

 

4. Sum Weighted Scores: Calculate the Sum of Weighted Scores 

 

= ∑𝑖 = 1𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒𝑖.                                      (2)  

 

5. Generate Overall Risk Score:  

𝑈𝑡𝑖𝑙𝑖𝑧𝑒 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑢𝑚 𝑜𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒𝑠/𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡.       (3)  

 

6. Set Risk Thresholds: Establish thresholds for risk levels.  

 

7. Assess Severity: Evaluate the severity of identified risks.  

 

8. Classify Risk Level:  

 

𝐴𝑝𝑝𝑙𝑦 𝑅𝑖𝑠𝑘 𝐿𝑒𝑣𝑒𝑙 = 𝐿𝑜𝑤 𝑖𝑓 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1,  
𝑀𝑒𝑑𝑖𝑢𝑚 𝑖𝑓 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 ≤ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, 

𝐻𝑖𝑔ℎ 𝑖𝑓 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2.,                                   (4)  

 

9. Dynamic Risk Adjustment: Adapt thresholds based on context.  

 

10. Feedback Loop: Integrate user feedback for continuous improvement.  

 

11. Optimize Mitigation Strategies: Apply machine learning optimization techniques.  

 

12. End: Conclude the Risk Scoring Algorithm process. 
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Figure 3: ECG beat classification by using the GSVM algorithm. 

As was seen in the preceding section, the accuracy of classification in the SVM model is highly 

sensitive to the values of the free parameters C and. However, at this moment, it is unknown which 

parameters should be set to their optimal levels. To find the optimal settings for the SVM, PSO will 

be used to guide the search. With enough adaptive computations and iterations, PSO can eventually 

find the best answer. The PSVM technique shown in Figure 4 was applied to the ECG beat 

classification problem. In the first stage, preprocessing is executed, and the methods for denoising, 

detecting QRS peaks with DWT, normalizing the data, performing dimensionality reduction with 

PCA, and extracting features with ICA are all explained. Next, the future steps of the PSVM strategy, 

including its structure and formulation, are laid forth. 

B. Adaptive Threat Intelligence (ATI) ALgorithm 

 

1. Receive cumulative score from BBA. 

 

BBACcumulative=cumulative score from BBA    (5) 

 

2. Real-time and historical threat data collected.  

 

Rreal_time=real-time threat data  

Hhistorical=historical threat data  

Ttime=current time         (6) 

 

3. Threat intensity is dynamically calculated.  
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Iintensity=α⋅Rreal_time+(1−α)⋅Hhistorical  

 

α is a weighting factor.        (7)  

4. Probability of threat occurrence estimated.  

 

Pthreat=1+e−β⋅(Iintensity−θ)1  

 

β and θ are parameters.        (8)  

5. If probability exceeds the threshold, an alert is triggered. 

Aalert=trigger alert(Pthreat)  

Rresponse=response function(Aalert, Ccumulative)      (9) 

 

6. If below the threshold, normal operation.  

 

Nnormal=normal operation(1−Pthreat)  

 

Rresponse_normal=response function(Nnormal, Ccumulative)      (10)  

 

7. Adaptive security measures adjusted. 

 

Ssecurity=adaptive security adjustment(Rresponse, Ttime)      (11)  

 

8. Threat intelligence updated 

 

Uupdate=update threat intelligence(Rreal_time,Hhistorical,Ttime)   (12)  

 

9. Ongoing monitoring and adaptation.  

 

Mmonitor=ongoing monitoring(Ssecurity, Uupdate)                  (13)  

 

10. End 

The algorithm depicts ATI, dynamically adapting security measures based on evolving threat 

intelligence. Real-time and historical data are combined to calculate threat intensity and estimate the 

probability of threat occurrence. Adaptive security adjustments and ongoing monitoring enhance 

robustness. 

The PSVM kernel parameter and the C parameter both have values for a single particle. In light of 

this, PSVM requires a two-part particle, one for each independent variable. Twenty particles make up 

the PSO's swarm in the pilot phase. The C parameter value, represented by the particle's leading edge, 

is typically thought of as an integer between 1 and 10,000,000. The last part of the particle represents 

the positive number, which is the GRBF kernel scaling factor parameter. 
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Figure 4: ECG Beat Classification based on PSVM. 

When a particle is chosen at random, it carries with it a specific value for the parameter and a specific 

value for the C parameter; these values are used during the training and testing of SVM classifiers to 

determine whether or not the particle should be accepted. 

8. Result and Discussion 

When the ECG signal component for testing is acquired, the classifier uses the maximum peak value 

of an individual beat to determine which ECG beats to label as belonging to specific cardiac rhythms. 

Accuracy, Sensitivity, Specificity, and Positive Predictivity are calculated to compare the performance 

of GSVM and PSVM algorithms. These parameters are defined below. 

A. Accurateness 

 

It is a standard method for allocating numerical values to the outcomes of tests. An improved level of 

accuracy denotes a system that operates more effectively. 

Accurateness =
𝑇𝑁+𝑇𝑃

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑆𝑎𝑚𝑝𝑙𝑒
 𝑋100                                          (12) 

B. Specificity 

The absence of inappropriate data classification was the defining characteristic of specificity. Another 

name for it is the True Negative Rate, which is abbreviated as TNR. The recall of the currently 

employed method is shown in contrast to other ways that are typically used in Figure 5. 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 𝑋100                     (13) 
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C. Sensitivity 

The sensitivity of the current technique can be conceptualized as the degree to which the model 

correctly categorizes the test data inside one of its categories. The question that was attempted to be 

answered by it was, "How many true positives were successfully detected?" There is also a term for 

it called True Positive Rate. 

𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑋100                           (14) 

D. Positive Predictivity 

The positive predictivity is defined as 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑋100                                      (15) 

Where TP, FN, FP, and TN stand for True Positive, False Negative, False Positive, and True Negative, 

respectively. TP refers to the actual number of detected occurrences. For events that were incorrectly 

denied, use FN. The former, FP, refers to incorrectly discovered events, whereas the latter, TN, refers 

to appropriately rejected events. 

Table 1: Performance Comparison of GSVM and PSVM. 

S. No. ECG Rhythm Sensitivity Specificity 

GSVM PSVM GSVM PSVM 

1 NSR 94.21  94.68  98.83 98.78 

2 VT 98.89  99.08  99.65 99.38 

3 IVR 98.95  98.97 99.56 99.67 

4 SBR 89.85  88.14 97.72 97.46 

5 AFIB 95.63  94.91  99.69 99.75 

6 VF 95.12  95.15  96.58 96.67 

 

 

Figure 5: Sensitivity Comparison of GSVM to PSVM. 
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Figure 6: Specificity Comparison of GSVM to PSVM. 

Table 2: The Performance Comparison of GSVM to PSVM. 

S. No. ECG Rhythm Positive Predictivity 

GSVM PSVM 

1 NSR 98.65 98.40 

2 VT 97.75 97.29 

3 IVR 98.67 98.72 

4 SBR 64.79 71.35 

5 AFIB 96.81 97.59 

6 VF 80.48 80.42 

 

 

Figure 7: Positive Predictivity Comparison of GSVM to PSVM. 

The GSVM method has a best-case classification accuracy of 96.73 percent when used to categorize 

ECG beats using randomly selected parameters. For PSVM, however, that percentage rises to 96.86%. 

These findings advocate for the PSVM strategy as the best and most efficient method for the task of 

classifying ECG rhythmic beats. 

From Figures 5, 6 and 7 we can conclude, how well a classifier can identify rhythmic beats without 

missing any of them is a function of its sensitivity. Because of their similarity in spectral estimates, 

timing features have played a crucial role in differentiating them; without them, the 2 classes are less 
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sensitive to noise. As a result, most other types of rhythmic beats are misunderstood to be Sinus 

Bradycardia beats. 

The MATLAB software suite was used to calculate the experimental data. There are six groups within 

the MIT-BIH arrhythmia database. Normal sinus rhythm (NSR), sinus bradycardia (SBR), atrial 

fibrillation (AFIB), ventricular tachycardia (VT), idiopathic ventricular tachycardia (IVR), and 

ventricular flutter (VFL) are the several types of abnormal sinus rhythms. The MIT-BIH database is 

broken down into the aforementioned categories, with each file including a minute-long recording. As 

was previously indicated, the classifier incorporates an ICA constructed with PSD features. When 

comparing methods, the PSVM is also simulated to keep computational costs and times low. Results 

from the aforementioned trials show that Particle Swarm Optimization is superior to other methods in 

classifying ECG beats. Some of Particle Swarm Optimization's benefits over widely used alternatives 

are listed below. The very foundation of PSO is an intelligent design. 

6. Conclusion  

 

The analysis of heart diseases relies heavily on the automated detection of ECG waves. Most 

researchers rely on positive illness to determine whether or not an automatic ECG reading device has 

performed adequately. The precise and dependable detection of the QRS complex, in addition to the 

T and P waves, is essential to the success of this endeavour. Genetic Algorithm-Support Vector 

Machine (GSVM) and Particle Swarm Optimization-Support Vector Machine (PSVM) are two 

methods that are compared and contrasted in this study to examine the classifier for cardiac 

arrhythmias. The purpose of this work is to better understand how to diagnose and treat cardiac 

arrhythmias. To find the optimal settings for the SVM, we first use a genetic algorithm (GA) and a 

particle swarm optimization (PSO) to process the ICA features constructed using the non-parametric 

power spectral estimation. The research on the origins of GA and PSO is complete. GSVM and PSVM 

simulation results have been compared and contrasted. Detailed performance data, including 

Sensitivity, Specificity, Positive Predictivity, and Accuracy percentages, as well as comparisons to 

the top classifier, have been evaluated and debated. The result suggests that PSVM outperforms 

GSVM concerning improved accuracy, Sensitivity, Specificity and Positive predictivity. 
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