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Abstract 

 

This paper uses some logical algebraic elements to extend any ring into a non-commutative ring containing the 

original ring with many generalized substructures and special elements. On the other hand, we study the 

substructures of non-commutative logical rings such as AH-homomorphisms and AH-ideals with many examples 

that explain their algebraic validity. Also, we discuss the possibility of solving a linear Diophantine equation with 

two variables in the non-commutative logical ring of integers, where we present an easy algorithm to solve this kind 

of generalized Diophantine equation. 
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1. Introduction 

Algebraic ring theory is one of modern algebra's most broad and important branches of mathematics. 

Ring extension plays a major role in modern algebraic theories and in solving algebraic equations. 

 

It was customary to build ring expansions through algebraic elements and the roots of polynomials until 

Smarandache et al. [17] introduced the idea of using logical elements defined by specific algebraic properties in 

constructing new expansions and defining Neutrosophic algebraic structures of all kinds, including vector spaces, 

integers, modules, and even matrices [7-10, 18-19].These new ideas have been widely used by many researchers in 

expanding algebraic structures through plithogenic sets, which have been widely used in expanding rings, matrices, 

and even distance-preserving algebraic functions [1-6, 11-13]. 

 

On the other hand, some expansions related to real numbers that depend on fuzzy sets have been studied, and their 

algebraic properties and geometric constructions have been studied in many recently published research papers [14-

16]. 

 

As a continuation of the extensive research efforts made previously, we have created a new expansion of rings based 

on algebraic elements of a logical nature, where we present the concept of non-commutative logical extension of a 

ring, with many elementary properties of this new generalization. Also, we discuss the solvability of linear 

Diophantine equations in two variables built over those rings in the integer case. 

 

2. Main Discussion 

Definition: 

Let R be a ring, the corresponding non-commutative logical ring is defined as follows: 

𝑅𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2    ; 𝑁1
2 = 𝑁1, 𝑁2

2 = 𝑁2, 𝑁1𝑁2 = 𝑁1, 𝑁2𝑁1 = 𝑁2, 𝑎, 𝑏, 𝑐 ∈ 𝑅 }. 

We call it the non-commutative logical ring of type (1), and we denote it by 𝑁𝐶𝑅1. 

Definition: 

Addition: 𝑅𝑁 × 𝑅𝑁 → 𝑅𝑁 such that: 

(𝑎 + 𝑏𝑁1 + 𝑐𝑁2) + (𝑎
′ + 𝑏′𝑁1 + 𝑐

′𝑁2) = (𝑎 + 𝑎
′) + (𝑏 + 𝑏′)𝑁1 + (𝑐 + 𝑐

′)𝑁2. 

Multiplication: : 𝑅𝑁 × 𝑅𝑁 → 𝑅𝑁 such that: 

(𝑎 + 𝑏𝑁1 + 𝑐𝑁2)(𝑎
′ + 𝑏′𝑁1 + 𝑐

′𝑁2) = 𝑎𝑎
′ + 𝑁1(𝑎𝑏

′ + 𝑏𝑎′ + 𝑏𝑏′ + 𝑏𝑐′) + 𝑁2(𝑎𝑐
′ + 𝑐𝑎′ + 𝑐𝑐′ + 𝑐𝑏′). 
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Remark: 

(𝑅𝑁.×) is not commutative, that is because for 𝑎 ∈ 𝑅 , (𝑎𝑁1)(𝑎𝑁2) = 𝑎
2𝑁1 ≠ (𝑎𝑁2)(𝑎𝑁1) = 𝑎

2𝑁2. 

Remark: 

If R has a unity (1), then 𝑅𝑁 has as a unity. 

Theorem: 

(𝑅𝑁. +.×) is a ring. 

Proof: 

Let 𝐴 = 𝑎0 + 𝑎1𝑁1 + 𝑎2𝑁2, 𝐵 = 𝑏0 + 𝑏1𝑁1 + 𝑏2𝑁2 , 𝐶 = 𝑐0 + 𝑐1𝑁1 + 𝑐2𝑁2  ∈ 𝑅𝑁, we have: 

𝐴 + 𝐵 = 𝐵 + 𝐴 . 𝐴 + 𝑂 = 𝑂 + 𝐴 = 𝐴 . 𝐴 + (−𝐴) = (−𝐴) + 𝐴 = 𝑂. 

Also, (𝐴 × 𝐵) × 𝐶 = [𝑎0𝑏0 +𝑁1(𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1 + 𝑎1𝑏2) + 𝑁2(𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏2 + 𝑎2𝑏1)] × (𝑐0 +
𝑐1𝑁1 + 𝑐2𝑁2) = 𝑎0𝑏0𝑐0 + 𝑎0𝑏0𝑐1𝑁1 + 𝑎0𝑏0𝑐2𝑁2 + 𝑁1(𝑎0𝑏1𝑐0 + 𝑎1𝑏0𝑐0 + 𝑎1𝑏1𝑐0 + 𝑎1𝑏2𝑐0) + 𝑁1(𝑎0𝑏1𝑐1 +
𝑎1𝑏0𝑐1 + 𝑎1𝑏1𝑐1 + 𝑎1𝑏2𝑐1) + 𝑁1(𝑎0𝑏1𝑐2 + 𝑎1𝑏0𝑐2 + 𝑎1𝑏1𝑐2 + 𝑎1𝑏2𝑐2) + 𝑁2(𝑎0𝑏2𝑐0 + 𝑎2𝑏0𝑐0 + 𝑎2𝑏2𝑐0 +
𝑎2𝑏1𝑐0) + 𝑁2(𝑎0𝑏2𝑐1 + 𝑎2𝑏0𝑐1 + 𝑎2𝑏2𝑐1 + 𝑎2𝑏1𝑐1) + 𝑁2(𝑎0𝑏2𝑐2 + 𝑎2𝑏0𝑐2 + 𝑎2𝑏2𝑐2 + 𝑎2𝑏1𝑐2) = (𝑎0𝑏0𝑐0) +
𝑁1(𝑎0𝑏0𝑐1 + 𝑎0𝑏1𝑐0 + 𝑎1𝑏0𝑐0 + 𝑎1𝑏1𝑐0 + 𝑎1𝑏2𝑐0 + 𝑎0𝑏1𝑐1 + 𝑎1𝑏0𝑐1 + 𝑎1𝑏1𝑐1 + 𝑎1𝑏2𝑐1 + 𝑎0𝑏1𝑐2 + 𝑎1𝑏0𝑐2 +
𝑎1𝑏1𝑐2 + 𝑎1𝑏2𝑐2) + 𝑁2(𝑎0𝑏0𝑐2 + 𝑎0𝑏2𝑐0 + 𝑎2𝑏0𝑐0 + 𝑎2𝑏2𝑐0 + 𝑎2𝑏1𝑐0 + 𝑎0𝑏2𝑐1 + 𝑎2𝑏0𝑐1 + 𝑎2𝑏2𝑐1 + 𝑎2𝑏1𝑐1 +
𝑎0𝑏2𝑐2 + 𝑎2𝑏0𝑐2 + 𝑎2𝑏2𝑐2 + 𝑎2𝑏1𝑐2) = 𝐴 × (𝐵 × 𝐶). 
𝐴 × (𝐵 + 𝐶) = (𝑎0 + 𝑎1𝑁1 + 𝑎2𝑁2) × [(𝑏0 + 𝑐0) + (𝑏1 + 𝑐1)𝑁1 + (𝑏2 + 𝑐2)𝑁2] = 𝑎0(𝑏0 + 𝑐0) + 𝑁1[𝑎0(𝑏1 +
𝑐1) + 𝑎1(𝑏0 + 𝑐0) + 𝑎1(𝑏1 + 𝑐1) + 𝑎1(𝑏2 + 𝑐2)] + 𝑁2[𝑎2(𝑏0 + 𝑐0) + 𝑎0(𝑏2 + 𝑐2) + 𝑎2(𝑏1 + 𝑐1) + 𝑎2(𝑏2 + 𝑐2)] =
[𝑎0𝑏0 + 𝑁1(𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1 + 𝑎1𝑏2) + 𝑁2(𝑎2𝑏0 + 𝑎0𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2)] + [𝑎0𝑐0 + 𝑁1(𝑎0𝑐1 + 𝑎1𝑐0 + 𝑎1𝑐1 +
𝑎1𝑐2) + 𝑁2(𝑎2𝑐0 + 𝑎0𝑐2 + 𝑎2𝑐1 + 𝑎2𝑐2)] = (𝐴 × 𝐵) + (𝐴 × 𝐶). 
Remark: 

It is clear that 𝑅 ⊂ 𝑅𝑁. 

Example: 

Take 𝑅 = 𝑍3 = {0.1.2}  . 𝑅𝑁 = {0.1.2. 𝑁1. 𝑁2. 1 + 𝑁1. 1 + 𝑁2. 2 + 𝑁1. 2 + 𝑁2. 1 + 𝑁1 + 𝑁2. 2 + 𝑁1 + 𝑁2. 2 + 2𝑁1 +
2𝑁2 . 𝑁1 + 𝑁2. 1 + 2𝑁1. 1 + 2𝑁2. 1 + 2𝑁1 + 𝑁2. 1 + 𝑁1 + 2𝑁2. . 2𝑁1 + 2𝑁2. . 2𝑁1 +𝑁2. . 𝑁1 + 2𝑁2. 2𝑁1. 2𝑁2. 1 +
2𝑁1 + 2𝑁2. 2 + 2𝑁1 + 𝑁2. 2 + 𝑁1 + 2𝑁2. 2 + 2𝑁1. 2 + 2𝑁2}. 
For example: 

 (1 + 𝑁1)(1 + 𝑁2) = 2 + 𝑁2 + 2𝑁1 + 𝑁1 = 2 + 𝑁2. 
(2 + 𝑁2)(1 + 𝑁1) = 2 + 2𝑁1 + 𝑁2 + 𝑁2 = 2 + 2𝑁1 + 2𝑁2. 

Remark: 

If R is finite with |𝑅| = 𝑛 . then |𝑅𝑁| = 𝑛3. 

Example: 

Take 𝑅 = 𝑍2 = {0.1}  . then 𝑅𝑁 = {0,1, 𝑁1, 𝑁2, 1 + 𝑁1, 1 + 𝑁2, 𝑁1 +𝑁2, 1 + 𝑁1 + 𝑁2}. 
Definition: 

If R is a field, then 𝑅𝑁 is called the non-commutative logical field, which is not a field in the ordinary meaning. 

It is only a ring. 

Definition: 

Let 𝐴 = 𝑎0 + 𝑎1𝑁1 + 𝑎2𝑁2 ∈ 𝑅𝑁, then it is called a unity if and only if there exists 𝐵 = 𝑏0 + 𝑏1𝑁1 + 𝑏2𝑁2 ∈ 𝑅𝑁 

such that 𝐴𝐵 = 𝐵𝐴 = 1. 

Under the condition that 𝑅𝑁 has a unity (1). 

Theorem: 

Let R be a commutative ring with unity, 𝑅𝑁 be its corresponding 𝑁 ⊂ 𝑅1, then  𝐴 = 𝑎0 + 𝑎1𝑁1 + 𝑎2𝑁2 ∈ 𝑅𝑁 is a 

unit if and only if: 𝑎0. 𝑎0
2 + 𝑎0𝑎2 + 𝑎1𝑎2 are units in R. 

Proof: 

Assume that there exists 𝐵 = 𝑏0 + 𝑏1𝑁1 + 𝑏2𝑁2 ∈ 𝑅𝑁 such that 𝐴𝐵 = 𝐵𝐴 = 1. This is equivalent to: 

{

𝑎0𝑏0 = 1
𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1 + 𝑎1𝑏2 = 0
𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏2 + 𝑎0𝑏1 = 0

 

Which is equivalent to: 

{
 
 

 
 𝑏0 =

1

𝑎0
   (𝑎0 is a unit in R)

𝑏1(𝑎0 + 𝑎1) + 𝑏2𝑎1 = −
𝑎1
𝑎0

𝑏1𝑎0 + 𝑏2(𝑎0 + 𝑎2) = −
𝑎2
𝑎0

 

∆= |
𝑎0 + 𝑎1 𝑎1
𝑎0 𝑎0 + 𝑎2

| = (𝑎0 + 𝑎1)(𝑎0 + 𝑎2) − 𝑎0𝑎1 = 𝑎0
2 + 𝑎0𝑎2 + 𝑎1𝑎2 
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To get a solution, ∆ should be invertible in R. 

∆𝑏1= |

−
𝑎1
𝑎0

𝑎1

−
𝑎2
𝑎0

𝑎0 + 𝑎2

| =
𝑎1𝑎2
𝑎0

−
𝑎1(𝑎0 + 𝑎2)

𝑎0
=
𝑎1𝑎2 − 𝑎1(𝑎0 + 𝑎2)

𝑎0
=
𝑎1(𝑎2 − 𝑎0 − 𝑎2)

𝑎0
= −𝑎1 

∆𝑏2= |

𝑎0 + 𝑎1 −
𝑎1
𝑎0

𝑎0 −
𝑎2
𝑎0

| = −
𝑎2(𝑎0 + 𝑎1)

𝑎0
+
𝑎1𝑎0
𝑎0

= −
𝑎2(𝑎0 + 𝑎1)

𝑎0
+ 𝑎1 

Thus: 𝑏1 =
∆𝑏1

∆
=

−𝑎1

(𝑎0+𝑎1)(𝑎0+𝑎2)−𝑎0𝑎1
 

𝑏2 =
∆𝑏2
∆
=

−
𝑎2(𝑎0 + 𝑎1)

𝑎0
+ 𝑎1

(𝑎0 + 𝑎1)(𝑎0 + 𝑎2) − 𝑎0𝑎1
 

Thus:{
𝑏1 =

−𝑎1

𝑎0
2+𝑎0𝑎2+𝑎1𝑎2

𝑏2 =
−𝑎2𝑎0−𝑎2𝑎1+𝑎1𝑎0

𝑎0(𝑎0
2+𝑎0𝑎2+𝑎1𝑎2)

 

And 𝐴−1 =
1

𝑎0
+𝑁1 (

−𝑎1

𝑎0
2+𝑎0𝑎2+𝑎1𝑎2

) + 𝑁2(
𝑎1𝑎0−𝑎2𝑎0−𝑎2𝑎1

𝑎0(𝑎0
2+𝑎0𝑎2+𝑎1𝑎2)

). 

Remark: 

If R is a field, then A is invertible if and only if: 𝑎0 ≠ 0. 𝑎0
2 + 𝑎0𝑎2 + 𝑎1𝑎2 ≠ 0. 

Open problem: 

What is the classification of the group of units of 𝑅𝑁? 

What is the relationship between 𝑈(𝑅𝑁) and 𝑈(𝑅)? 

Definition: 

The element 𝐴 ∈ 𝑅𝑁 is called idempotent if and only if 𝐴2 = 𝐴. 

It is called 2- potent if and only if 𝐴2 = 0. 

Theorem: 

Let 𝐴 = 𝑎0 + 𝑎1𝑁1 + 𝑎2𝑁2 ∈ 𝑅𝑁, where R is commutative ring, then: 

1] A is idempotent in 𝑅𝑁 if and only if: 

a) 𝑎0 is idempotent in 𝑅. 

b) (𝑎1, 𝑎1 + 𝑎2 + 2𝑎0), (𝑎2, 𝑎1 + 𝑎2 + 2𝑎0) are duplets in R, with 𝑎1 + 𝑎2 + 2𝑎0 acts as an identity. 

2] A is 2-potent in 𝑅𝑁 if and only if: 

a) 𝑎0 is 2-potent in 𝑅. 

b) 𝑎1, 𝑎2 are zero divisors in R with: 𝑎1(𝑎1 + 𝑎2 + 2𝑎0) = 𝑎2(𝑎1 + 𝑎2 + 2𝑎0) = 0. 

Proof: 

1]  𝐴2 = 𝐴 is equivalent to: 

{

𝑎0
2 = 𝑎0

𝑎1
2 + 2𝑎0𝑎1 + 𝑎2𝑎1 = 𝑎1

𝑎2
2 + 2𝑎0𝑎2 + 𝑎1𝑎2 = 𝑎2

 

Thus: {
𝑎0

2 = 𝑎0
𝑎1(𝑎1 + 𝑎2 + 2𝑎0) = 𝑎1
𝑎2(𝑎1 + 𝑎2 + 2𝑎0) = 𝑎2

  

Which is equivalent to 𝑎  and 𝑏 . 

2]  𝐴2 = 0 is equivalent to: {
𝑎0

2 = 0
𝑎1(𝑎1 + 2𝑎0 + 𝑎2) = 0

𝑎2(𝑎1 + 2𝑎0 + 𝑎2) = 0

 

Which is equivalent to 𝑎  and 𝑏 . 

Definition: 

Let 𝑅𝑁 be the 𝑁𝐶𝑅1 , then 𝐾 = 𝑘0 + 𝑘1𝑁1 + 𝑘2𝑁2 = {𝑟0 + 𝑟1𝑁1 + 𝑟2𝑁2   ; 𝑟𝑖 ∈ 𝑘𝑖} is called AH-ideal of  𝑅𝑁 if 𝑘𝑖 
are ideal in R. 

If 𝑘0 = 𝑘1 = 𝑘2, then K is called AHS-ideal. 

Example: 

Take 𝑅 = ℤ.  𝑅𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2 ; 𝑎. 𝑏. 𝑐 ∈ ℤ} . 𝑘0 = 〈2〉. 𝑘1 = 〈3〉. 𝑘2 = 〈6〉, we have: 

𝐾 = 𝑘0 + 𝑘1𝑁1 + 𝑘2𝑁2 = {2𝑥0 + 3𝑥1𝑁1 + 6𝑥2𝑁2   ; 𝑥𝑖 ∈ ℤ} is an AH-ideal of  𝑅𝑁. 

Also, 𝑘0 + 𝑘0𝑁1 + 𝑘0𝑁2 = {2𝑥0 + 2𝑥1𝑁1 + 2𝑥2𝑁2   ; 𝑥𝑖 ∈ ℤ} is an AHS-ideal. 
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Theorem: 

Let 𝐾 = 𝑘0 + 𝑘1𝑁1 + 𝑘2𝑁2 . 𝑅 = 𝑅0 + 𝑅1𝑁1 + 𝑅2𝑁2 be two AH-ideals of  𝑅𝑁, then:𝐾 ∩ 𝑅 is an AH-ideal. 

If 𝐾. 𝑅 are two  AHS-ideals, then 𝐾 ∩ 𝑅 is an AHS-ideal. 

Proof: 

𝐾 ∩ 𝑅 = (𝐾0 ∩ 𝑅0) + (𝐾1 ∩ 𝑅1)𝑁1 + (𝐾2 ∩ 𝑅2)𝑁2  . where{𝐾𝑖 ∩ 𝑅𝑖  is an ideal of R. 

So that 𝐾 ∩ 𝑅 is an AH-ideal: 

On the other hand, if 𝐾. 𝑅 are two AHS-ideals, then: 

𝐾 ∩ 𝑅 = (𝐾0 ∩ 𝑅0) + (𝐾1 ∩ 𝑅1)𝑁1 + (𝐾2 ∩ 𝑅2)𝑁2   ; 𝐾0 ∩ 𝑅0 = 𝐾1 ∩ 𝑅1 = 𝐾2 ∩ 𝑅2. thus 𝐾 ∩ 𝑅 is an AHS − ideal. 
Definition: 

Let 𝑅. 𝑇 be two rings, and 𝑓𝑖: 𝑅 → 𝑇 ; 0 ≤ 𝑖 ≤ 2 are three homomrphisms, then 𝑓 = 𝑓0 + 𝑓1𝑁1 + 𝑓2𝑁2:  𝑅𝑁 →
𝑇𝑁  such that: 

𝑓(𝑎 + 𝑏𝑁1 + 𝑐𝑁2) = 𝑓0(𝑎) + 𝑓1(𝑏)𝑁1 + 𝑓2(𝑐)𝑁2 is called an AH-homomorphism. 

If 𝑓0 = 𝑓1 = 𝑓2, then 𝑓 is called AHS-homomrphism. 

Remark: 

If 𝑓0, 𝑓1, 𝑓2 are isomorphisms, then 𝑓 is called AHS-isomorphism. 

Definition: 

Let 𝑓 = 𝑓0 + 𝑓1𝑁1 + 𝑓2𝑁2, 𝑔 = 𝑔0 + 𝑔1𝑁1 + 𝑔2𝑁2  ∶  𝑅𝑁 → 𝑇𝑁 be two AH-homomorphisms, we define: 

(𝑓 + 𝑔)  ∶  𝑅𝑁 → 𝑇𝑁 such that: 

(𝑓 + 𝑔)(𝑎 + 𝑏𝑁1 + 𝑐𝑁2) = (𝑓0 + 𝑔0)(𝑎) + (𝑓1 + 𝑔1)(𝑏)𝑁1 + (𝑓2 + 𝑔2)(𝑐)𝑁2. 

(𝑓 × 𝑔)  ∶  𝑅𝑁 → 𝑇𝑁 such that: 

(𝑓 × 𝑔)(𝑎 + 𝑏𝑁1 + 𝑐𝑁2) = (𝑓0 ∙ 𝑔0)(𝑎) + (𝑓1 ∙ 𝑔1)(𝑏)𝑁1 + (𝑓2 ∙ 𝑔2)(𝑐)𝑁2. 

The set of all AH-homomorphisms between 𝑅𝑁 and 𝑇𝑁 is denoted by  𝐴𝐻𝐻(𝑅𝑁 . 𝑇𝑁). 
Definition: 

Let 𝑓 = 𝑓0 + 𝑓1𝑁1 + 𝑓2𝑁2 ∶  𝑅𝑁 → 𝑇𝑁 . 𝑔 = 𝑔0 + 𝑔1𝑁1 + 𝑔2𝑁2  ∶  𝑇𝑁 → 𝑆𝑁 be two AH-homomorphisms, we define: 

𝑔 ○ 𝑓:  𝑅𝑁 → 𝑆𝑁 ;  𝑔 ○ 𝑓(𝐴) = 𝑔 ○ 𝑓(𝑎 + 𝑏𝑁1 + 𝑐𝑁2) = (𝑔0 ○ 𝑓0) + (𝑔1 ○ 𝑓1)𝑁1 + (𝑔2 ○ 𝑓2)𝑁2. 

Definition: 

Let 𝑓 = 𝑓0 + 𝑓1𝑁1 + 𝑓2𝑁2 ∶  𝑅𝑁 → 𝑇𝑁 be an AH-homomrphism, then: 

𝐴𝐻_𝑘𝑒𝑟(𝑓) = 𝑘𝑒𝑟(𝑓0) + 𝑘𝑒𝑟(𝑓1)𝑁1 + 𝑘𝑒𝑟(𝑓2)𝑁2. 

𝐴𝐻_𝐼𝑚(𝑓) = 𝐼𝑚(𝑓0) + 𝐼𝑚(𝑓1)𝑁1 + 𝐼𝑚(𝑓2)𝑁2. 

Theorem: 

Let 𝑓 = 𝑓0 + 𝑓1𝑁1 + 𝑓2𝑁2 ∶  𝑅𝑁 → 𝑇𝑁 be an AH-homomorphism, then: 

1] 𝑓(0) = 0 . 𝑓(1) = 1 + 𝑁1 + 𝑁2  ; 1 ∈ ℝ. 

2] 𝐴𝐻_𝑘𝑒𝑟(𝑓) is an AH-ideal of  𝑅𝑁. 

3] 𝐴𝐻_𝐼𝑚(𝑓) is an AH-subring of 𝑇𝑁. 

4] If 𝐾 is an AH-ideal of 𝑅𝑁 , then 𝑓(𝐾) is an AH-ideal of 𝑇𝑁. 

Proof: 

1] 𝑓(0) = 𝑓0(0) + 𝑓1(0)𝑁1 + 𝑓2(0)𝑁2 = 0 + 0 ∙ 𝑁1 + 0 ∙ 𝑁2 = 0. 

𝑓(1) = 𝑓0(1) + 𝑓1(1)𝑁1 + 𝑓2(1)𝑁2 = 1 + 𝑁1 +𝑁2. 

2] we have: 𝑘𝑒𝑟(𝑓0), 𝑘𝑒𝑟(𝑓1), 𝑘𝑒𝑟(𝑓2) are ideals of 𝑅, thus 𝐴𝐻_𝑘𝑒𝑟(𝑓) = 𝑘𝑒𝑟(𝑓0) + 𝑘𝑒𝑟(𝑓1)𝑁1 + 𝑘𝑒𝑟(𝑓2)𝑁2 is an 

AH-ideal of  𝑅𝑁. 

3] we have: 𝐼𝑚(𝑓0), 𝐼𝑚(𝑓1), 𝐼𝑚(𝑓2) are subrings of 𝑇, hence: 𝐴𝐻_𝐼𝑚(𝑓) is an AH-subring of  𝑇𝑁. 

4] Assume that 𝐾 = 𝑘0 + 𝑘1𝑁1 + 𝑘2𝑁2  ;  𝑘𝑖 are ideals of 𝑅 for 0 ≤ 𝑖 ≤ 2, then: 𝑓(𝐾) = 𝑓0(𝑘0) + 𝑓1(𝑘1)𝑁1 +
𝑓2(𝑘2)𝑁2 is an AH-ideal of  𝑇𝑁, that is because 𝑓𝑖(𝑘𝑖) is an ideal of 𝑇. 

Theorem: 

(𝐴𝐻𝐻( 𝑅𝑁 . 𝑇𝑁), +,×) is a ring. 

Proof: 

Suppose that 𝑓 = 𝑓0 + 𝑓1𝑁1 + 𝑓2𝑁2 , 𝑔 = 𝑔0 + 𝑔1𝑁1 + 𝑔2𝑁2 , ℎ = ℎ0 + ℎ1𝑁1 + ℎ2𝑁2 be three arbitrary elements of 

𝐴𝐻𝐻( 𝑅𝑁 . 𝑇𝑁), then: 

𝑓 + (𝑔 + ℎ) = (𝑓0 + 𝑔0 + ℎ0) + (𝑓1 + ℎ1 + 𝑔1)𝑁1 + (𝑓2 + ℎ2 + 𝑔2)𝑁2 = (𝑓0 + 𝑔0) + ℎ0 + [(𝑓1 + ℎ1) + 𝑔1]𝑁1 +
[(𝑓2 + ℎ2) + 𝑔2]𝑁2 = (𝑓 + 𝑔) + ℎ. 

𝑓 × (𝑔 × ℎ) = (𝑓0𝑔0ℎ0) + (𝑓1𝑔1ℎ1)𝑁1 + (𝑓2𝑔2ℎ2)𝑁2 = (𝑓0𝑔0)ℎ0 + [(𝑓1𝑔1)ℎ1]𝑁1 + [(𝑓2𝑔2)ℎ2]𝑁2 = (𝑓 × 𝑔) × ℎ. 

𝑓 + 0 = 0 + 𝑓 = 𝑓 , 𝑓 + (−𝑓) = (−𝑓) + 𝑓 = 0 , 𝑓 + 𝑔 = 𝑔 + 𝑓. 

On the other hand, we have: 

𝑓 × (𝑔 + ℎ) = 𝑓0(𝑔0 + ℎ0) + [𝑓1(𝑔1 + ℎ1)]𝑁1 + [𝑓2(𝑔2 + ℎ2)]𝑁2 = 𝑓0𝑔0 + 𝑓0ℎ0 + [𝑓1𝑔1+𝑓1ℎ1]𝑁1 +
[𝑓2𝑔2 + 𝑓2ℎ2]𝑁2 = (𝑓0𝑔0 + 𝑓1𝑔1𝑁1 + 𝑓2𝑔2𝑁2) + (𝑓0ℎ0+𝑓1ℎ1𝑁1 + 𝑓2ℎ2𝑁2) = (𝑓 × 𝑔) + (𝑓 × ℎ). 
So that, our proof is complete. 
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Theorem: 

Let 𝑓 ∶  𝑅𝑁 → 𝑇𝑁 . 𝑔 ∶  𝑇𝑁 → 𝑆𝑁 be two AH-homomrphisms, then 𝑔 ○ 𝑓 is an AH-homomrphism. 

Proof: 

𝑔 ○ 𝑓 = (𝑔0 ○ 𝑓0) + (𝑔1 ○ 𝑓1)𝑁1 + (𝑔2 ○ 𝑓2)𝑁2  . and 𝑔𝑖 ○ 𝑓𝑖  is a ring homomorphism between 𝑅 and S, thus 𝑔 ○ 𝑓  

is an AH-homomrphism between  𝑅𝑁 and 𝑆𝑁. 

Definition: 

Let  𝑅𝑁 . 𝑇𝑁 be two (𝑁 ⊂ 𝑅1), then: 

 𝑅𝑁 × 𝑇𝑁 = {(𝑥. 𝑦);   𝑥 ∈ 𝑅𝑁 . 𝑦 ∈  𝑇𝑁}. 
Theorem: 

 𝑅𝑁 × 𝑇𝑁 = (𝑅 × 𝑇)𝑁 is a ring. 

Proof: 

 𝑅𝑁 × 𝑇𝑁 = {(𝑥. 𝑦);   𝑥 ∈ 𝑅𝑁 . 𝑦 ∈  𝑇𝑁}  ;  {
𝑥 = 𝑥0 + 𝑥1𝑁1 + 𝑥2𝑁2
𝑦 = 𝑦0 + 𝑦1𝑁1 + 𝑦2𝑁2

        with 𝑥𝑖 ∈ R .  𝑦𝑖 ∈ T  ; 0 ≤ i ≤ 2. 

There for, 𝑅𝑁 × 𝑇𝑁 = {(𝑥0. 𝑦0) + (𝑥1. 𝑦1)𝑁1 + (𝑥2. 𝑦2)𝑁2} = (𝑅 × 𝑇)𝑁which is the non-commutative logical 

extension of 𝑅 × 𝑇. 

Special types of 𝑵𝑪𝑹𝟏: 

ℤ𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ ℤ} is called the integer 𝑁𝐶𝑅1. 

ℚ𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ ℚ} is called the rational 𝑁𝐶𝑅1. 

ℝ𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ ℝ} is called the real 𝑁𝐶𝑅1. 

ℂ𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ ℂ} is called the complex 𝑁𝐶𝑅1. 

𝕨𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ 𝐹𝐽} is called the weak fuzzy complex  𝑁𝐶𝑅1. 

𝕊𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ 𝕊} is called the split-complex  𝑁𝐶𝑅1. 

Where {
𝐹𝐽 = {𝑥 + 𝑦𝐽 ; 𝑥. 𝑦 ∈ ℝ  . 𝐽2 = 𝑡 ∈ ]0.1[ }  ∙

𝕊 = {𝑥 + 𝑦𝐽 ; 𝑥. 𝑦 ∈ ℝ  . 𝐽2 = 1 }  ∙
 

ℙ𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ 𝑛 − 𝑠𝑝𝑅} is called the symbolic n-plithogenic  𝑁𝐶𝑅1. 

𝑅𝑁𝑁 = {𝑎 + 𝑏𝑁1 + 𝑐𝑁2  ; 𝑎. 𝑏. 𝑐 ∈ 𝑅𝑛(𝐼)} is called the n-refined neutrosophic  𝑁𝐶𝑅1. 

For definitions of n-refined neutrosophic rings and symbolic n-plithogenic rings. 

 

3. Diophantine equations in two variables: 

Definition: 

Let 𝐴 = 𝑎0 + 𝑎1𝑁1 + 𝑎2𝑁2   , 𝐵 = 𝑏0 + 𝑏1𝑁1 + 𝑏2𝑁2  , 𝐶 = 𝑐0 + 𝑐1𝑁1 + 𝑐2𝑁2 be three elements in 

 ℤ𝑛 = {𝑥 + 𝑦𝑁1 + 𝑧𝑁2  ; 𝑥, 𝑦, 𝑧 ∈ ℤ , 𝑁1
2 = 𝑁1, 𝑁2

2 = 𝑁2 , 𝑁1𝑁2 = 𝑁1, 𝑁2𝑁1 = 𝑁2}. 

We define the right non-commutative linear Diophantine equation in two variables 

𝑋 = 𝑥0 + 𝑥1𝑁1 + 𝑥2𝑁2  , 𝑌 = 𝑦0 + 𝑦1𝑁1 + 𝑦2𝑁2 as follows: 

𝐴 ∙ 𝑋 + 𝐵 ∙  𝑌 = 𝐶, we denote it by 𝑁𝐶𝐷𝑅. 

Definition: 

The left non-commutative linear Diophantine equation in two variables as follows: 

𝑋 ∙ 𝐴 + 𝑌 ∙  𝐵 = 𝐶, we denote it by 𝑁𝐶𝐷𝐿. 

Definition: 

The right - left non-commutative linear Diophantine equation in two variables as follows: 

𝐴 ∙ 𝑋 + 𝑌 ∙  𝐵 = 𝐶, we denote it by 𝑁𝐶𝐷(𝑅.𝐿). 

The discussion of 𝑵𝑪𝑫𝑹: 

𝐴 ∙ 𝑋 + 𝐵 ∙  𝑌 = 𝐶 is equivalent to: 

(𝑎0𝑥0 + 𝑏0𝑦0) + 𝑁1[𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1+𝑎1𝑥2 + 𝑏0𝑦1 + 𝑏1𝑦0 + 𝑏1𝑦1+𝑏1𝑦2] + 𝑁2[𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2+𝑎2𝑥1 +
𝑏0𝑦2 + 𝑏2𝑦0 + 𝑏2𝑦2+𝑏2𝑦1] = 𝑐0 + 𝑐1𝑁1 + 𝑐2𝑁2. 

This is equivalent to: 

{

𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0   (1)

𝑎0𝑥1 + 𝑏0𝑦1 + 𝑎1(𝑥0 + 𝑥1 + 𝑥2) + 𝑏1(𝑦0 + 𝑦1 + 𝑦2) = 𝑐1    (2)

𝑎0𝑥2 + 𝑏0𝑦2 + 𝑎2(𝑥0 + 𝑥1 + 𝑥2) + 𝑏2(𝑦0 + 𝑦1 + 𝑦2) = 𝑐2    (3)

 

Equation (1) is solvable if and only if gcd(𝑎0, 𝑏0)| 𝑐0. 

Assume that (1) is solvable, and (𝑘0, 𝑙0) is a solution. 

By adding (1),(2),(3) we get: 
(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2) = 𝑐0 + 𝑐1 + 𝑐2   (3) 
Assume that (3) is solvable i.e. gcd(𝑎0 + 𝑎1 + 𝑎2. 𝑏0 + 𝑏1 + 𝑏2)| 𝑐0 + 𝑐1 + 𝑐2 and (𝑘1, 𝑙1) is a solution of (3). 
Then, we get from (2): 

𝑎0𝑥1 + 𝑏0𝑦1 + 𝑎1𝑘1 + 𝑏1𝑙1 = 𝑐1, thus: 
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𝑎0𝑥1 + 𝑏0𝑦1 = 𝑐1 − 𝑎1𝑘1 − 𝑏1𝑙1    
It is solvable if and only if: 

gcd(𝑎0. , )| 𝑐1 − 𝑎1𝑘1 − 𝑏1𝑙1. 

If (Ⅱ) is solvable, with (𝑘2. 𝑙2) as a solution, then we get: 

{
 
 

 
 

𝑥0 = 𝑘0
𝑦0 = 𝑙0

𝑥0 + 𝑥1 + 𝑥2 = 𝑘1
𝑦0 + 𝑦1 + 𝑦2 = 𝑙1

𝑥1 = 𝑘2
𝑦1 = 𝑙2

       . thus  

{
 
 

 
 

𝑥0 = 𝑘0
𝑦0 = 𝑙0

𝑥2 = 𝑘1 − 𝑘2 − 𝑘0
𝑦2 = 𝑙1 − 𝑙0 − 𝑙2

𝑥1 = 𝑘2
𝑦1 = 𝑙2

 

Example:  

Consider the following 𝑁𝐶𝐷𝑅: 
(1 + 2𝑁1 + 𝑁2)𝑋 + (3 + 𝑁1 + 2𝑁2)𝑌 = 7 + 12𝑁1 + 11𝑁2. 

Equation (1) is 𝑥0 + 3𝑦0 = 7 

Equation (2) is 4(𝑥0 + 𝑥1 + 𝑥2) + 6(𝑦0 + 𝑦1 + 𝑦2) = 30 

Which is equivalent to: 2(𝑥0 + 𝑥1 + 𝑥2) + 3(𝑦0 + 𝑦1 + 𝑦2) = 15. 

Take (𝑘0, 𝑙0) = (1.2) a solution of (1). 

Take (𝑘1, 𝑙1)  = (0.5) a solution of (2). 
Equation (3) is: 𝑥1 + 3𝑦1 = 12 − 0 − (5) = 7. 

Take (𝑘2, 𝑙2)  = (4,3) a solution of (3). 

Thus {

𝑥0 = 1 .  𝑦0 = 2
𝑥1 = 1 . 𝑦1 = 2 

𝑥2 = −2
𝑦2 = 1

 

So that 𝑋 = 1 + 𝑁1 − 2𝑁2   , 𝑌 = 2 + 2𝑁1 + 𝑁2, is a solution of the original equation. 

The discussion of 𝑵𝑪𝑫𝑳: 

𝑋 ∙ 𝐴 + 𝑌 ∙  𝐵 = 𝐶 , is equivalent to: 

(𝑎0𝑥0 + 𝑏0𝑦0) + 𝑁1[𝑥0𝑎1 + 𝑥1𝑎0 + 𝑥1𝑎1+𝑥1𝑎2 + 𝑦1𝑏0 + 𝑦0𝑏1 + 𝑦1𝑏1+𝑦1𝑏2] + 𝑁2[𝑥0𝑎2 + 𝑥2𝑎2 + 𝑥2𝑎0+𝑥2𝑎1 +
𝑦0𝑏2 + 𝑦2𝑏2 + 𝑦2𝑏0 + 𝑦2𝑏1] = 𝑐0 + 𝑐1𝑁1 + 𝑐2𝑁2. 

There for: 

{

𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0   (1)

𝑎1𝑥0 + (𝑎0 + 𝑎1 + 𝑎2)𝑥1 + 𝑏1𝑦0 + 𝑦1(𝑏0 + 𝑏1 + 𝑏2) = 𝑐1    (2)

𝑎2𝑥0 + (𝑎0 + 𝑎1 + 𝑎2)𝑥2 + 𝑏2𝑦0 + (𝑏0 + 𝑏1 + 𝑏2)𝑦2 = 𝑐2    (3)

 

Assume that (1) is solvable, i.e gcd(𝑎0, 𝑏0)| 𝑐0, and (𝑘0, 𝑙0) is a solution of (1). 

Then (2) will be: 
(𝑎0 + 𝑎1 + 𝑎2)𝑥1 + (𝑏0 + 𝑏1 + 𝑏2)𝑦1 = 𝑐1 − 𝑎1𝑘0 − 𝑏1𝑙0       𝑖𝑡 𝑖𝑠 is solvable if and only if: gcd (𝑎0 + 𝑎1 +
𝑎2. 𝑏0 + 𝑏1 + 𝑏2)| 𝑐1 − 𝑎1𝑘0 − 𝑏1𝑙0 

Assume that it is solvable with (𝑘1, 𝑙1) as a solution. 

(2) will be: 
(𝑎0 + 𝑎1 + 𝑎2)𝑥2 + (𝑏0 + 𝑏1 + 𝑏2)𝑦2 = 𝑐2 − 𝑎2𝑘0 − 𝑏2𝑙0         
is solvable if and only if: gcd (𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2)| 𝑐2 − 𝑎2𝑘0 − 𝑏2𝑙0 

Assume that it is solvable with (𝑘2. 𝑙2) as a solution. 

Hence: {

𝑥0 = 𝑘0  , 𝑦0 = 𝑙0
𝑥1 = 𝑘1  , 𝑦1 = 𝑙1
𝑥2 = 𝑘2 , 𝑦2 = 𝑙2

 

Example: 

Consider the following 𝑁𝐶𝐷𝐿: 

𝑋 ∙ (1 + 2𝑁1 +𝑁2) + 𝑌 ∙ (3 − 𝑁1 + 𝑁2) = 13 + 2𝑁1 + 2𝑁2. 

Equation (1) is: 𝑥0 + 3𝑦0 = 13 , it is solvable, we can take (𝑘0, 𝑙0) = (1.4). 
Equation (Ⅰ) is: 4𝑥1 + 3𝑦1 = 2 − (2)(1) + (1)(4) = 4, it is solvable, we can take (𝑘1, 𝑙1) = (1.0). 
Equation (Ⅱ) is: 4𝑥2 + 3𝑦2 = 2 − (1)(1) − (1)(4) = −3, it is solvable, we can take (𝑘2, 𝑙2) = (0. −1). 
Thus: (𝑋, 𝑌) = (1 + 𝑁1. 4 − 𝑁2) is a solution of the original equation. 

The discussion of 𝑵𝑪𝑫(𝑹.𝑳): 

𝐴 ∙ 𝑋 + 𝑌 ∙  𝐵 = 𝐶 , is equivalent to: 
(𝑎0𝑥0 + 𝑏0𝑦0) + 𝑁1[𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1+𝑎1𝑥2 + 𝑦0𝑏1 + 𝑦1𝑏0 + 𝑦1𝑏1+𝑦1𝑏2] + +𝑁2[𝑎0𝑥2 + 𝑎2𝑥0 +
𝑎2𝑥2+𝑎2𝑥1 + 𝑦0𝑏2 + 𝑦2𝑏0 + 𝑦2𝑏2 + 𝑦2𝑏1] = 𝑐0 + 𝑐1𝑁1 + 𝑐2𝑁2. 

It is equivalent to: 
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{

𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0   (1)

𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1+𝑎1𝑥2 + 𝑦0𝑏1 + 𝑦1(𝑏0 + 𝑏1 + 𝑏2) = 𝑐1    (2)

𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2+𝑎2𝑥1 + 𝑦0𝑏2 + 𝑦2(𝑏0 + 𝑏1 + 𝑏2) = 𝑐2    (3)

 

Equation (1) is solvable if and only if gcd(𝑎0, 𝑏0)| 𝑐0. 

Assume that it is solvable with (𝑘0, 𝑙0) as a solution. 

By adding (1),(2),(3), we get: 
(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2) = 𝑐0 + 𝑐1 + 𝑐2    
Assume that it is solvable, i.e gcd (𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2)| 𝑐0 + 𝑐1 + 𝑐2 with (𝑘1, 𝑙1) as a solution. 

From equation (2), we can write: 

𝑎0𝑥1 + (𝑏0 + 𝑏1 + 𝑏2)𝑦1 = 𝑐1 − 𝑏1𝑙0 − 𝑎1𝑘1     
Assume that it is solvable, i.e. gcd (𝑎0. 𝑏0 + 𝑏1 + 𝑏2)| 𝑐1 − 𝑏1𝑙0 − 𝑎1𝑘1, with (𝑘2, 𝑙2) as a solution. 

There for, we get: 

{

𝑥0 = 𝑘0  , 𝑦0 = 𝑙0
𝑘2 = 𝑥1  , 𝑙2 = 𝑦1

𝑥0 + 𝑥1 + 𝑥2 = 𝑘1  , 𝑦0 + 𝑦1 + 𝑦2 = 𝑙1

 

Hence: {

𝑥0 = 𝑘0  , 𝑦0 = 𝑙0
𝑥1 = 𝑘2  , 𝑦1 = 𝑙2
𝑥2 = 𝑘1 − 𝑘0 − 𝑘2  
𝑦2 = 𝑙1 − 𝑙0 − 𝑙2

 

Example:  

Consider the following 𝑁𝐶𝐷(𝑅.𝐿): 

(1 + 𝑁1 + 𝑁2)𝑋 + 𝑌 ∙ (3 + 𝑁1 +𝑁2) = 10 + 6𝑁1, 

According to our discussion, we can see that: 

Equation (1) is: 𝑥0 + 3𝑦0 = 10 , take the solution: (𝑘0, 𝑙0) = (1,3). 
Equation (Ⅰ) is: 3(𝑥0 + 𝑥1 + 𝑥2) + 5(𝑦0 + 𝑦1 + 𝑦2) = 16 take the solution: (𝑘1, 𝑙1) = (2,2). 
Equation (Ⅱ) is: 𝑥1 + 5𝑦1 = 6 − (1)(3) − (1)(2) = 1, take the solution: (𝑘2, 𝑙2) = (1,0). 

Thus: 

𝑥0 = 1  . 𝑦0 = 3
𝑥1 = 1  . 𝑦1 = 0
𝑥2 = 0 . 𝑦2 = −1

 

And (𝑋, 𝑌) = (1 + 𝑁1, 3 − 𝑁2) is a solution of the original equation. 

 

4. Conclusion 

In this paper, we used some logical algebraic elements to extend any ring into a non-commutative ring contains the 

original ring with many generalized substructures and special elements. On the other hand, we studied the 

substructures of non-commutative logical rings such as AH-homomorphisms and AH-ideals with many examples 

that explain their algebraic validity. Also, we discussed the possibility of solving linear Diophantine equation with 

two variables in the non-commutative logical ring of integers, where we present an easy algorithm to solve this kind 

of generalized Diophantine equations. 
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