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Abstract

The notion of a neutrosophic Abelian subgroup of a group is introduced. The characterizations of a neutro-
sophic Abelian subgroup are investigated. We show that the homomorphic preimage of a neutrosophic Abelian
subgroup of a group is a neutrosophic Abelian subgroup, and the onto homomorphic image of a neutrosophic
Abelian subgroup of a group is a neutrosophic Abelian subgroup.
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1 Introduction

Zadeh® introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a generalization
of fuzzy sets, Atanassov' introduced the degree of nonmembership/falsehood (f) in 1986 and defined the intu-
itionistic fuzzy set. Smarandache came up with the word “neutrosophic”, which comes from the words “neu-
trosophic” (French neuter, Latin neuter, neutral, and Greek Sophia, skill or wisdom), which means “knowledge
of neutral thought”. This third/neutral part is what makes “fuzzy/intuitionistic” logic/set different from “neu-
trosophic” logic/set; it is the part that is not clear or known (besides the truth). Smarandache introduced the
degree of indeterminacy/neutrality (i) as an independent component in 1995 (published in 1998) and defined
the neutrosophic set on three components (t, i, f) = (truth, indeterminacy, falsehood). The notion of the neutro-
sophic set, which Smarandache developed,3 4 extends the notions of the classic set and fuzzy set, intuitionistic
fuzzy set, and interval-valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various parts (refer
to the site http://fs.gallup.unm.edu/neutrosophy.htm).

In this paper, we introduce the notion of a neutrosophic Abelian subgroup of a group. The characterizations
of a neutrosophic Abelian subgroup ideal are investigated. We show that the homomorphic preimage of a
neutrosophic Abelian subgroup of a group is a neutrosophic Abelian subgroup, and the onto homomorphic
image of a neutrosophic Abelian subgroup of a group is a neutrosophic Abelian subgroup.

Definition 1.1. Let X be a nonempty set. The neutrosophic set® on X is defined to be a structure

A= {(z, (@), 7(2), ¥ (2)) | © € X}, (D

where 11 : X — [0, 1] is a truth membership function, v : X — [0, 1] is an indeterminate membership function,
and ¢ : X — [0,1] is a false membership function. The neutrosophic fuzzy set in is simply denoted by

A= (pa,va,%4).
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2 Abelian subgroups based on neutrosophic set

We start this section with the neutrosophic normalizer and neutrosophic centralizer and show that the neutro-
sophic normalizer (centralizer) is a subgroup of the group. We also prove that this newly defined centralizer
is a normal subgroup of the neutrosophic normalizer and investigate some fundamental algebraic properties
of these situations. We also introduce the notion of a neutrosophic Abelian (cyclic) group, prove that every
neutrosophic subgroup is a neutrosophic Abelian group analogue to classical group theory, and also discuss
their properties.

Definition 2.1. Let G be a group and A = (pa,7v4,%4) be a neutrosophic set of G. Then A is said to be a
neutrosophic subgroup of G if the following conditions hold:

pra(mn) > pa(m) A pa(n)
(Ym,n € G) [ ~va(mn) >~ya(m) Ava(n) |, 2)
a(mn) <a(m)Va(n)

(Vm e G) | va(m™') =~a(m) |. 3)
Pa(m™) =1pa(m)

Equivalently, a neutrosophic set A = (pa,v4,%4) of a group G is said to be a neutrosophic subgroup of G if
and only if

pa(mn=') > pa(m) A pa(n)
(Vm,n € G) | ~va(mn™") > ~ya(m) Aya(n) |. 4
Ya(mn=') <a(m) Aya(n)

Definition 2.2. Let G be a group and A = (114,74, %4) a neutrosophic subgroup of G. Let N(A) = {a € G |
pala=tza) = pa(x),va(a tra) = ya(x),Ya(a"txa) = a(z) forall z € G}. Then N(A) is called the
neutrosophic fuzzy normalizer of A in G.

Definition 2.3. A neutrosophic subgroup A = (ua,7v4,14) of a group G is said to be a neutrosophic normal
subgroup of G if

pra(mn) = pra(nm)
(Vm,n € G) | va(mn) =~ya(nm) . (5)
Ya(mn) = pa(nm)

Equivalently, a neutrosophic subgroup A = (pa,7va,%a) of a group G is said to be neutrosophic normal if
and only if

pa(n= mn) = pra(m)
(Vm,n € G) | va(n~'mn)=~a(m) |. (©6)

Ya(n~tmn) = pa(m)

Theorem 2.4. Let A = (pa,va,%a) be aneutrosophic subgroup of a group G. Then

(1) N(A) is a subgroup of G.
(2) A is a neutrosophic normal subgroup of G if and only if N(A) = G.

(3) A is a neutrosophic normal subgroup of the group N (A).

Proof. (1) Leta,b € N(A). Then we have

pala”
(Ve e G) | yala'za) =~ya(z) |, (7)
Yala wa) = pa(x)
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pa(b~ab) = pa(x)
(Ve e G) | ya(b™'wb) =~ya(z) |. 8)
wA(b_lxb) = ’L/JA(.%‘)

Put y = a~'za in (3)) and using (7)), we get
pa(b~ra wab) = pa(a'za) = pa(z),
ya(b~ta"tzab) = ya(a"txa) = ya(x),
Yalb ta tzab) = Yala " za) = Pa(x).

That is,
pa((ab)~taz(ab)) = pa(z),
va((ab) " z(ab)) = ya(z),
wA((ab) 'z (ab)) = Ya(z)
Thus, ab € N(A). Next, change = to 2" in (7)), we get
pa(a™ e ra) = pa(a™") = pa(a),
vala 'z a) = ya(z™h) = a(),
Yala tz7la) = pa(z™") = Ya(z)
That is,
pa((aza=)) = pafaza=) = ua(o),
va((laza™')7") = valaza™) = ya(),
Ya((aza™") ") = Yalaza™) = Pa(z).
Thus,
pa((@ )~ ta(a™h) = pa(z),
va((a™ ) tz(a™)) = ya(z

Then a=* € N(A). Hence, N(A) is a subgroup of G.

(2) Obviously, when N(A) = G, then pa(a=twa) = pa(z), vala txa) = ya(x), and Y4 (a " tza) = ()
for all z,a € G. Hence, A is a neutrosophic normal subgroup of G.

pa(z), vala ~'za)

Conversely, assume that A is a neutrosophic normal subgroup of G. Then p 4 (a™ =
aataa) = pa(e).

Lza
va(z), and Ya(a"txa) = wA( ) for all z,a € G, that is, the set {a € G

a) =
|
ya(a™tza) = ya(z), Yala " za) = Ya(x )forall:reg} G. Hence, N(A) = G.

(3) Leta,b € N(A). Then pa(a=tza) = pa(z), yala tza) = va(x), and ta(a™ xa) Ya(x) for all

x € G. Putting z = ab, we get pa(ab) = pa(a taba) = pa(ba), ya(ab) = ya(a"taba) = y4(ba), and
a(ab) = pa(a"taba) = 1) 4(ba). Hence, A is a neutrosophic normal subgroup of N (A). O

Definition 2.5. Let G be a group and A = (pa,7v4,1%4) a neutrosophic subgroup of G. Let
C(A) ={a e G| pa(la,z]) = pale),ya([a, z]) = va(e),Ya([a, z]) = Ya(e) forall x € G}.

Then C'(A) is called the neutrosophic centralizer of A in G, where [z, y] is the commutator of the two elements

xand yin G, thatis, [z,y] = 21y~ lzy.

Theorem 2.6. Let A = (pa,7va,%a) be aneutrosophic subgroup of a group G. Then

(1) C(A) is a subgroup of G.
(2) C(A) is a normal subgroup of N(A).

Proof. (1) Clearly, C(A) # () ase € C(A). Leta,b € C(A). Then

pa(la,2]) = pale),va(la, z]) = va(e), Ya(la, 2]) = Pale),
pa((b,z]) = pale),va((b, z]) = ya(e), (b 2]) = Pa(e)
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hold for all z,y € G, that is,
pala 'z ax) = pale),vala 'z tax) = ya(e), pala™ 'z az) = Ya(e), )
pa(d™ry = oy) = pale),ya(d~ 'y~ by) = va(e), (b~ y Tby) = Ya(e). (10)

Putting y = a~'za in (I0), we have

pa(d~ta "tz taba " za) = pa(e) = pa((ab) (ab
= pallab) =" (ab)2) = pale),

ya(b~ta"tz7taba " za) = yale) = va((ab)~lz71(ab)2)(z7ta"tza)) = va(e)
= val(ab)"'27 (ab)z) = vale),

Ya(b a2 taba " za) = Ya(e) = a((ab)~tz71(ab)z) (2 ta" za)) = Ya(e)
= Ya((ab)~tz71(ab)z) = ale)

Hence, ab € C(A). Also, from (9), we have

pale) = pa(a™ 'z ax) = pa((a™ o™ ax)) = pa(z™'a  za),
va(e) =vala 'z ax) = ya((a

Yale) = bala~'zaz) = Ya((@~ 2z az)) = Pa (e~ a za).

That is,

pa(z=la wa) = pale),
ya(z 10 'ra) = va(e),

Pa(r~ta” m) Yale).
Putting = = ta™!, we get

palat=ta a ta) = pa(at=ta=t) = pale),
valat=ra tata) = ya(at~ta='t) = vale),
Yalat~ra  ta " a) = Yalat™ra't) = ale).

Thus, a=! € C(A). Hence, C(A) is a subgroup of G.
(2)Leta € C(A) and b € N(A). We shall show that b~ 'ab € C(A). Now,

pa(a~ e az) = pafe)
Vz e G) | vala "tz taz) = ya(e) , (11
Yala e laz) = pale)
pa(b=lytby) = pale)
(Vy € G) | a0~y by) =yale) |- (12)
Ya(b~ly~ by) = Pale)

Puty = a~ 'z 'az in (12) and using (1), we have
1,-1

pa(b otz tazb) = pa(a e tax) = pale),
ya(b~ta"tr laxb) = ya(a "tz tax) = ya(e),

Yab~ta "t taxb) = Yala txtax) = pale).
Again, putting z = bzb~! above, we have

pa(b=ta bz b7 abzb=1b) = pale),
ya(b~tatbz b tabzb~ lb)—yA( ),
Pa(b~ta" bz b abzb b)) = 4 (e).

That is,
pa(d~ta bz 1o tabz) = pale),
ya(b~ta"tbztb " tabz) = ya(e),
Ya(bta=tbz7 b tabz) = a(e).

Thus
pa((b=tab) =12z~ (b~ tab)z
va((b™ 1ab) L= (b~ tab)z
sz((b tab)” 1 ~H(b7 ab)z) = 7/’A<
(

So, b~tab € C(A). Hence, C(A) is a normal subgroup of N (A). O

—
I
2
S
[ \_/
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Proposition 2.7. Let A = (pa,va,%a) be a neutrosophic normal subgroup of a group G. Let N = {a € G |
pa(a) = pa(e),va(a) = vale),vala) = va(e)}. Then N C C(A).

Proof. Let A = (pa,7a,%4) be a neutrosophic normal subgroup of group G. Therefore, pa(y~txy)

pa(x), yaly~tay) = va(x), and Ya(y~twy) = a(x) forall z,y € G. Leta € N. Then pa(a) = pa( ;

va(a) =va(e), and Y4 (a) = Y a(e). Now,
MA([CL,JT]) = (a 1],‘ )

> ala=) A jua(e-laz)

= pala)Apa(a)

= pale) Apale)

= pale).
Thus, 14 ([a, z]) = pa(e); similarly, we can show that y4([a,z]) = va(e) and ¥ 4([a,x]) = ¥a(e). Thus,
a € C(A). Hence, N C C(A). O

Definition 2.8. Let A = (114,74, 4) be a neutrosophic subgroup of a group G. Then A = (pa,y4,%a4) is
called a neutrosophic Abelian subgroup of G if Cy, 5 5(A) = {z € X | pa(z) > o, va(x) > B,v%a(x) < 0}
is an Abelian subgroup of G for all a, 3,9 € (0,1] with0 < a«+ 5+ < 1.

Theorem 2.9. Let A be a neutrosophic subgroup of a group G. Then A is a neutrosophic subgroup of G if and
only if Cy, .5(A) is a subgroup of G for all ., 3,0 € (0,1] witha+ 3+ 6 < 1.

Proof. Clearly, C, g s is nonempty as e € Cy 3. For C, g 5 to be a subgroup of G, we shall show that for
2,y € Cops, vy ' € Cops. Letz,y € Cy 5. Then pa(z) > o, va(x) > B, ¢a(z) < dand pa(y) > a,
va(y) > B, va(y) < 6. Since A = (ua,v4,%4) is a neutrosophic subgroup of G, we have

pa(ey™") > min{pa (@), paly™")} = min{pa(z), pa(y)} > min{e, a} = a,
Ya(zy™') > min{ya(z), yaly™")} = min{ya(z),va(y)} > min{B, 8} = 3,
Ya(zy™") < max{yha(z),Ya(y—")} = max{a(z),va(y)} < max{J,d} = o.

Therefore, zy~* € C, s.5. Hence, C, g 5 is a subgroup of G. O
Remark 2.10. 2 Every subgroup of an Abelian group is Abelian.

Theorem 2.11. If G is an Abelian group, then every neutrosophic subgroup of G is a neutrosophic Abelian
subgroup of G.

Proof. Given that G is an Abelian group. Then zy = yx holds for all z,y € G. Since A is a neutrosophic
Abelian subgroup of G and by Theorem [2.9] we have C, g 5(A) is a subgroup of G. In view of Remark
we know that C,, g 5(A) is an Abelian subgroup of G. By using the definition of neutrosophic Abelian
subgroup, we conclude that A is a neutrosophic Abelian subgroup group G. O

The following example leads us to note that the converse of Theorem [2.T1| may not be true.

Example 2.12. Consider G = S5 = {4, (12), (13), (23), (123), (132)} be the symmetric group. Consider the
neutrosophic set A of G defined by

09 ifx=1
palr)=<¢ 0 ifa?=i
0.05 ifa® =i,
0.1 ifx=1
yalz)=¢ 0 ifz?=i
0.05 ifz3 =i,
0 ife=1
Ya(r) =<0.03 ifa? =i
0.04 ifa® =i,
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where © € G and ¢ is the identity element of G. Clearly, A is a neutrosophic subgroup of G. Moreover, all
Co,8,6(A) are Abelian subgroups of G for all , 3,5 € (0,1] with 0 < a + S+ 0 < 1. Hence, Ais a
neutrosophic Abelian subgroup of G, but G is a non-Abelian group.

Theorem 2.13. Let A = (1a,v4, %4 ) be a neutrosophic Abelian subgroup of G. Then the set H = {a € G |
pa(ab) = pa(ba),va(ab) = ya(ba),va(ab) = 1 a(ba) Vb € G} is an Abelian subgroup of G.

Proof. Since A = (f14,74,%a4) is a neutrosophic Abelian subgroup of group G, Cy g,5(A) is an Abelian
subgroup of G forall o, 3,6 € (0,1] with0 < a+ 5+ < 1. We shall show that H is an Abelian subgroup of
G. Clearly, H # Qase € H. Leta,b € H. Then pia(az) = pa(za), yalax) = ya(za), Yalax) = Ya(za)
and pa(ax) = pa(za), valax) = va(za), Yalax) = Ya(za) for all z € G. Now, for z € G, we
have pa((ab)x) = pala(br)) = pa((bz)a) = pa(b(za)) = pa((za)h) = pa(z(ab)), ya((ab)r) =
Ya@(br)) = va((br)a) = va(b(za) = 7a((za)h) = va(z(ab)) and Ya((ab)s) = Galabr)) =
YVa((bx)a) = Ya(b(za)) = Ya((za)b) = Y a(xz(ab)). Hence, ab € H. Also, let a € H. We shall show that
a~! € H. Since a € H, we have pi4(az) = pa(ra),ya(ax) = ya(xa), and 14 (ax) = 14 (xa) hold for all
x € G (%). We shall show that pia(a™'y) = pa(ya™'),va(a™'y) = ya(ya™"), and Pa(a~'y) = ta(ya™")
hold for all y € G. Putting z = y~! in (%), we get pa(ay™') = pa(y~'a), valay™) = ya(y~'a), and
Yalay™") =va(y~'a). Now, pa(a='y) = pa((a™'y)™") = paly~"'a) = palay™) = pa((ay=") ") =
pa(ya™t). Similarly, we can show that v4(a"'y) = ya(ya™!) and ¥ 4(a"'y) = Ya(ya™!) hold for all
y € G. Thus, a! € H SoHisa subgroup of G. Next, we show that H is an Abelian subgroup of
G. Let a,b € H. Without loss of generality, let pa(a) = a,vya(a) = B, Yala) < 1 — (a+ ) and
pa(d) = a1,74(b) = B1, vYa(a) <1 — (a1 + f1). Thena € Cy g1—(at+p)(A), b € Co, g, 1—(ar+5:)(A).
Letaw < vy and 8 < 1. Then pa(b) = a; > o, va(b) = 1 > Band Y4 (b)) < 1— (a1 + 1) < 1—(a+0),
$0b € Cq 51— (a+8)(A). Thus, a,b € Cy 51— (a+p)(A) and so ab = ba. Hence, H is an Abelian subgroup of
G. O

Proposition 2.14. (1) If A = (14, V4, ¥ 4) is a neutrosophic Abelian subgroup of a group G, then A is also
a neutrosophic normal subgroup of G.

(2) The sets H and C(A) are same, that is, C(A) = H.

Proof.
C(A) ={acG:pa(la,z]) = pale),yalla,z]) = yale),

Ya(la,z]) =1a(e) forall z € G}

— [0 €6 : pala—aaz) = p(e), va(a~ "z az) = 74(e),
Ya(a ™tz lax) = Ya(e) forallz € G}

— {0 € G- pal(ea)ar) = jale), va((za)~ az) = 7a(e),
Ya((za)~tax) =1a(e) forallz € G}

{0 € G ja(za) = pa(az), 1 (za) = 7aaz),
Ya(xza) =Pa(ax) forall z € G}

=H.

O

Theorem 2.15. Let A = (pua,va,%4) be a neutrosophic Abelian subgroup of a group G. Then C(A) is an
Abelian subgroup of G.

Theorem 2.16. Let A = (G1, pia,v4a,%a) and B = (Ga, up,vB,¥B) be two neutrosophic subgroups of a
group Gy and Gs, respectively. Then A X B is a neutrosophic Abelian subgroup of Gy X Gy if and only if both
A and B are neutrosophic Abelian subgroups of G, and Gs, respectively.

Proof. First, let A and B be neutrosophic Abelian subgroups of G; and G, respectively. Then Cy, g,5(A) and
Co,p,6(B) are Abelian subgroups of G; and G, respectively for all o, 5,0 € (0,1) with0 < a+ 8+ <1,
80 Co 8,6(A) x Cy,p,5(B) is an Abelian subgroup of Gy x Go. But Cy, g 5(A X B) = Cy.p,5(A) X Cqo 5.5(B).
Therefore, C, ,5(A x B) is an Abelian subgroup of G; x G, forall v, 5, € (0,1] with0 < a+ S+ < 1.
Thus, A x B is a neutrosophic Abelian subgroup of G; x Gs.

Conversely, let A x B be a neutrosophic Abelian subgroup of G; X Ga. Then C,, g,5(A x B) is an Abelian
subgroup of Gy x Ga, that is, Cy, g 5(A) X Cy p,6(B) is an Abelian subgroup of G; x Go. Thus, Cy 55(A)
and C, g,5(B) are Abelian subgroups of G; and G, respectively. Hence, A and B are neutrosophic Abelian
subgroups of G; and G, respectively. O
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Definition 2.17. Let A = (ua,7v4,%4) be a neutrosophic subgroup of a group G. Then A is called a
neutrosophic cyclic subgroup of G if C, g5(A) is a cyclic subgroup of G for all o, 3,5 € (0,1] with
O<a+p+6<1.

Remark 2.18. 2 Every subgroup of a cyclic group is cyclic.

Theorem 2.19. If G is a cyclic group, then every neutrosophic subgroup of G is a neutrosophic cyclic subgroup

of G.

Proof. Given that G is a cyclic group. Then G = (z) for some = € G. Let A be a neutrosophic subgroup of
G. Since A is a neutrosophic Abelian subgroup of G and by Theorem we have Cy 3 5(A) is a subgroup
of G. In view of Remark we know that C, g,5(A) is a cyclic subgroup of G. By using the definition of
neutrosophic cyclic subgroup, we conclude that A is a neutrosophic cyclic subgroup group G. O

The following example leads us to note that the converse of Theorem may not be true.

Example 2.20. Consider G = (a,b | a® = b* = ¢,bab~! = a™!) be dihedral group of order six. Consider
the neutrosophic set A of G defined by

09 ifz=e
palz) =< 0 ifa?=e
0.05 ifad =e,
0.1 ifx=e
va(z) = 0 ifz?=e
0.05 ifa3 =e,
0 ifx=e
Ya(r) =001 ifa2=e
0.05 ifz3 =e,

where x € G and e is the identity element of G. Clearly, A is a neutrosophic subgroup of G. Moreover, all
Ca,8,5(A) are cyclic subgroups of G forall o, 5, € (0, 1] with0 < a++J < 1. Hence, A is a neutrosophic
cyclic subgroup of G, but G is not a cyclic group.

Proposition 2.21. If G be a cyclic group, then every neutrosophic subgroup of G is a neutrosophic cyclic
subgroup of G.

Proof. Let G = (x) be a cyclic group, and let A be any neutrosophic subgroup of G. Then

pa(z™) > pa(z ) > pa(@"?) > ... > palz),
Ya(z™) > 7A(x”*11) > ya(z"?) > > yalz),
<

Ya(x™) < Ya(a™ Ya(a"?) << a(x)

hold for all n € N. Therefore, if z™ € C,, ,5(A) for some m € N, then 2™, 2™+ 2™mT2 .. € C,5.4(4),
that is, C 5,5(A) = (x~'), which is a cyclic subgroup of G for all o, 3,6 € (0,1] with0 < o+ 8+ < 1.
Hence, A is a neutrosophic cyclic subgroup of G. O

Theorem 2.22. Let h : Gy — Gy be homomorphism of a group G into a group Go. Let B be a neutrosophic
Abelian subgroup of Go. Then h=1(B) is a neutrosophic Abelian subgroup of Gy .

Proof. Let B be a neutrosophic Abelian subgroup of Ga. Therefore, C, 5 s(B) is an Abelian subgroup of G,
for all @, 3,6 € (0,1] with0 < o+ B3+ < 1. Then Cy 5 5(h"1(B)) = h™ (Caps(B)) = {z € G1 |
h(z) € Cop.s(B)}. Letxq,x2 € Cy 5,5(h~ (B)). Then h(z1), h(x2) € Cy p,5(B). Then

ph-1(B)(T1) > o, yp-1(py(w1) > By Yp-1() (1) <0,
ph-1(B)(T2) > o, h-1(py(T2) > B, Yp-1(p)(r2) < 0.
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That is,
pe(h(z1)) = a,vp(h(z1)) =
pi(h(r2)) > a,vp(h(22)) >
This implies that
min{pp(h(z1)), pp(h(z2))} > a,
) >

min{yg(h(z1)), v8(h(z2))} > B,
max{yp(h(z1)), ¥p(h(z2))} < 6.
Hence,
pp(h(z1)h(z; ")) > min{up(h(z1)), pp(h(22))} > a
ve(h(z1)h(z5 ")) > min{yp(h(z1)), 8 (h(22))} >
Yp(h(z1)h(zy ")) < max{yp(h(z1)), Yp(h(z ))}S
Therefore,

pp(h(z)h(zy 1) = a,vp(h(@)h(zy ) > B, ¢p(h(z1)h(zy ")) < 6.
It follows that
h(l’l)h(z;l) €Cuaps(B) = h(zlxgl) € Cup,5(B)
= a:lx;l c h_l(Ca,m;(B))
= :Cll'gl S Ca’g’g(hfl(B)).

Hence, C, 5.5(h~!(B)) is a subgroup of G forall o, 3,6 € (0,1] with0 < a+S+8 < 1. As Cy p,5(h ™ (B))
is an Abelian subgroup of G, we have h(x1)h(z2) = h(x)h(z1). This implies that h(x122) = h(xoz)
and so pp(h(z122)) = pp(ha1s)), ve(h(z122)) = vp(hz122)), and Yp(h(z122)) = Yp(h(2221)).
It follows that p1j,-1(p)(z172) = pp-1(B)(T271), Yh-1(B) (T172) = Vp-1(B)(T271), and Py -1y (T172) =
Yp-1(B)(z271). Hence, 2122 = xox1. Thus, Ca,p.5(h~1(B)) is an Abelian subgroup of G; for all , 3,6 €
(0,1] with 0 < a + 3+ & < 1. Hence, h~!(B) is a neutrosophic Abelian subgroup of Gj. O

Theorem 2.23. Let h : G — Go be a surjective homomorphism of a group Gy onto a group Gs. Let A =
(LA, v4,%a) be a neutrosophic Abelian subgroup of G1. Then h(A) is a neutrosophic Abelian subgroup of
Go.

Proof. Since A is a neutrosophic Abelian subgroup of Gy, we have Cy, 5,5(A) is an Abelian subgroup of G,
forall a, 8,6 € (0,1] with 0 < ao+ 8 + 6 < 1. We shall show that h(A) is a neutrosophic Abelian subgroup
of G,. For this, we show will that C,, g s(h(A)) is an Abelian subgroup of Go. Let y1,y2 € Co g.5(h(A)).
Then there exist x1, x2 € G; such that h(z1) = y1, h(x2) = yo. Then

Bra)y (1) >, Ya) (W) > B, Uneay(y1) <9,
Piea)y(y2) = @ vneay(y2) = B, ncay(y2) < 6.

Since h(Cq,5,6(A)) C Cu p,5(h(A)), there exist z1, z2 € Gy such that
pa(z1) > ppcay(yi) > a,va(wr) > ypa) (1) > B,
B,

> B,a(x1) < Ypeay(yn) <0,
pa(w2) > pncay(y2) > a,va(x2) > Yhay(y2) > B, va 5

(72) < Pneay(y2) <.

This implies that
min{pa(zy), pa(r2)} > a,
min{ya(21),va(z2)} > B,
max{ya(z1),Ya(z2)} <9

Hence,
uA(ylygll) > min{pa(y1), pay2)} > a,
Ya(y1ys 1) > min{ya(y1),va(y2)} > B,
Ya(y, ) <max{a(yr), valyz)} < 0.
Therefore,
payiys ') > o vayiys ) > Bova(yiys ) <6
It follows that
y1ys ' € Caps(A) = h(yys ") 61 h(Ca,p.5(A)) C Cops(h(A))
= h(yl)lh(yz_ ) € Ca,p,5(h(A))
= Y1y, € Ca’g75(h(A)).
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Hence, C, 5.5(h~1(B)) is a subgroup of G; forall o, 3,6 € (0,1] with0 < a+5+6 < 1. Let h(z1), h(z2) €
Co,8,6(h(A)). Then there exists Cs g ., (A) such that z1,22 € Cs0.,(A), where §,0,w € (0,1] and 0 <
d+ 6+ w < 1. Since Cy g,5(A) is an Abelian group, we get z1x2 = xax1 and so h(z1)h(z2) = h(z122) =
hzox1) = h(z2)h(z1), thatis, y1y2 = yay1. Thus, Cy g,5(h(A)) is an Abelian subgroup of G,. Hence, h(A)
is a neutrosophic Abelian subgroup of Gs. O

Theorem 2.24. Let h : G — Go be a homomorphism of a group Gy into a group Go. Let B be a neutrosophic
cyclic subgroup of Go. Then h™1(B) is neutrosophic cyclic subgroup of Gi.

Proof. Since B is neutrosophic cyclic subgroup of G,, we have C,, s 5(B) is a cyclic subgroup of G, for all
a,B,0 € (0,1] with0 < a+8+6 < 1. Let Cy p,5(B) = (g2) for some go € Go. Now, for g2 € G, there exists
g1 € Gy such that h(g) = go. Thus, Cops(B) = (f(g1)). So. h= (Cars) = Capa(h™'(B)) = (a1).
Hence, h~!(B) is a neutrosophic cyclic subgroup of G;. O

Theorem 2.25. Let h : Gy — Gy be a surjective homomorphism of a group Gy onto a group Go. Let A be a
neutrosophic cyclic subgroup of G1. Then h(A) is a neutrosophic cyclic subgroup of Go.

Proof. Let A be a neutrosophic cyclic subgroup of G;. Therefore, C, g 5(A) is a cyclic subgroup of G for all
a,B,6 € (0,1] with0 < e+ 8+ § < 1. We shall show that h(A) is a neutrosophic cyclic subgroup of G.
Let g € Co 5.6(f(A)). As h is surjective, therefore, let g = h(gy) for some g1 € G1. As g1 € Gy, we can find
one Cy g,5(A) which exists for all g1 € G; and hence, for all ¢ € Cy g5(h(A)) such that g1 € Cy 55(A).
Since Cy p,5(A) is a cyclic subgroup of Gy, let Cy, 5.5(A) = (g91). So, g1 = g". Thus, g = h(g1)h((g1)") =
(h(g1))", thatis, Cy, p,5(h(A)) is a cyclic subgroup of Go. Hence, h(A) is a neutrosophic cyclic subgroup of
Go. O

Definition 2.26. The support of a neutrosophic set A of X is defined to be
suppy(A) ={z € X | pa(z) > 0,v(x) > 0,¢4(x) < 1}.
Clearly, supp x (A4) is J{Cu p,s(A4) | forall o, 8,6 € (0,1] such that o« + 5+ < 1}.

Proposition 2.27. For a function f : X — Y and neutrosophic sets A and B of X and Y, respectively, we
have

(1) f(suppx(A)) C suppy (f(A)), equivalently holds if f is bijective,
(2) = (suppy (B)) = suppx (f~1(B)).

Proposition 2.28. If A is a non-zero neutrosophic subgroup of a group G, then supp (A) is a subgroup of G.

The following example shows that the converse of Proposition [2.28]is untrue.

Example 2.29. Let G = (R, +) be a group of real numbers under addition. Define the neutrosophic set A on
G by
0.31 ifx=0
palz) =<072 ifzeQ—{0}
0 ifr e R—Q,

0.21 ifx=0
va(z) =<0.62 ifzeQ-—{0}
0 ifzeR—Q,

0.51 ifz=0

Ya(z) =022 ifzxeQ—{0}
1 ifreR-Q.

Clearly, A is not a neutrosophic subgroup of G, but supp(A) = Q is a subgroup of G.
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Proposition 2.30. If A is a neutrosophic normal subgroup of a group G, then supp (A) is a normal subgroup

of G.

The following example shows that the converse of Proposition [2.30]is untrue.

Example 2.31. Let G = S3 = {e,a,a,b,ab,ab}, where b = ¢ = a be the symmetric group on 3 symbols.

Define the neutrosophic set A on G by

% ifx=e
pa(zr) = : ifz=>5
5 otherwise,
% ifr=e
va(z) = i ifr==5
5 otherwise,
0 ifx=e
Yalz) = % ifz=»5
5 otherwise.

Clearly, A is a neutrosophic subgroup of G and supp(A) = Ss is normal in G. But A is not a neutrosophic
normal subgroup of G, for Cy 1, = {z € G | pa(w) > 5,74(2) > 5,9a(x) < 1} = {e, b} is not normal in
g.

Theorem 2.32. Let A = (pa,va,%4) be a neutrosophic subgroup of a group G. Then A is a neutrosophic
Abelian subgroup of G if and only if supp(A) is an Abelian (cyclic) subgroup of G.

Proof. If supp (A) is an Abelian subgroup of G, then the result follows as C g 5 C suppg(A) for o, 3,6 €
(0,1] such that « + 8+ 6 < 1.

Conversely, let A be a neutrosophic Abelian subgroup of G. Let a,b € suppg(A). Then a € Cy, ;.5 (A)
and b € C,, 8, s,(A) for some o, B;,0; € (0,1] such that o; + 8; + 6; < 1, where i = 1,2.

Case i: When a1 < g, f1 < B2 and 81 > 62, a,b € Cq, 3,5, (A) and ab = ba.
Case ii: When ai; > aw, f1 > o and 61 < 02, a,b € Cq, 8, .5,(A) and ab = ba.

Other cases can similarly be dealt with. That is, when A is a neutrosophic cyclic subgroup of G, supps(A4) is
cyclic and can be proved on the same lines. O

Definition 2.33. If A = (114,74, %4) is a neutrosophic set of a group G and H is a subgroup of G, then the
restriction of A on H is denoted by A|H is a neutrosophic set on H defined as

(AlH)(z) = (MA\H(x)a7A|H(x)71/}A|H(x))v
where pia1 7 (2) = pa(x), vaja(z) = va(x) and Yo g (2) = a().

The proof of the following propositions is easy and hence omitted.

Proposition 2.34. Let A = (pua,va,%4) be a neutrosophic set of a group G. Then we have the following:

(1) If A is a neutrosophic subgroup of G and H is a subgroup of G, then A|H is a neutrosophic subgroup of
H.

(2) If A|H is the restriction of the neutrosophic set A of G on the subgroup H of G, then suppy(A|H) =
supp(A) N H.

(3) IF Ais a cyclic neutrosophic subgroup of G and H is a subgroup of G, then A|H is a cyclic neutrosophic
subgroup of H if and only if H is a cyclic subgroup of G.
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