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Abstract 

Tropical cyclones (TCs) are powerful, low-pressure weather systems attributed to heavy rainfall and strong winds, 

and have often resulted in extensive damage to coastal regions. TC intensity prediction, an essential aspect of 

meteorological forecasting, includes evaluating the strength of the storm to facilitate disaster preparedness and 

alleviate possible risks. Classical approaches for the prediction of TC intensity rely on different oceanic and 

atmospheric parameters, but the incorporation of artificial intelligence (AI) approaches, especially those leveraging 

image data, provides positive breakthroughs in efficiency and accuracy. By harnessing AI techniques like deep 

learning architectures and convolutional neural networks (CNNs), meteorologists could analyze radar data, 

satellite imagery, and other visual inputs to distinguish complicated patterns indicative of intensity changes and 

TC development. This combination of weather science and AI-driven image analysis enables more timely and 

precise predictions and improves our understanding of TC dynamics, eventually fortifying protection against the 

impacts of formidable storms. This article introduces Neutrosophic TOPSIS with Artificial Intelligence Driven 

Tropical Cyclone Intensity Estimation (NTOPSIS-TCIE) technique for Weather Prediction. The presented 

NTOPSIS-TCIE technique determines the intensities of the TC which in turn helps to forecast weather. In the 

NTOPSIS-TCIE technique, median filtering (MF) approach is used to remove the noise in the images. In addition, 

the features are extracted using deep convolutional neural network (CNN) model. To enhance the performance of 

the CNN model, Harris Hawks Optimization (HHO) algorithm is applied. Finally, the NTOPSIS model is 

employed for the prediction of TC intensities. The performance of the NTOPSIS-TCIE technique can be studied 

using TC image dataset and the results signify its promising results over other models 

Keywords: Tropical Cyclone; Artificial Intelligence; Neutrosophic; Weather Prediction; Harris Hawks 

Optimization 

1. Introduction 

Tropical cyclone (TC) is a dangerous climate action which contains most major effects on life of humans and 

assets and can affect disasters like dangerous winds and huge waves [1]. The positions of TC lifetime maximum 

intensities (LMI) are currently moving poleward, corresponding to the growth of the tropical zones affected by 

global warming. Therefore, LMI positions are transferring near coastlines by 30 kilometres per year, mainly in the 

Western North Pacific area [2]. Few studies recommend that the complete intensity of TC will upsurge, with slower 

fading of land-falling TCs owing to the enlarged atmospheric-soaked water vapor in the hotter climate [3]. The 
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socio and economic damage initiated by TCs in sea regions is only probable to enlarge in future, which 

recommends the significance of enhancing the capabilities of groups to estimate the positions and TCs intensity.  

TC intensity is a significant feature in forecasting TC, and precise intensity prediction has significant economic 

and social importance [4]. The atmospheric method is an extremely non-linear chaotic model, and the initial value 

trouble and the mistake of the method might transport uncertainty. So, it is very essential to illustrate this 

uncertainty, affecting single-value to probabilistic predictions, thus enabling more complete decision-making and 

danger valuation [5]. While many research works were led on the forecast of TC intensity for past years, some 

development was created in the intensity performance forecast, which is a block in the area of meteorological 

predicting [6]. While some research work has tried to measure probabilistic predictions or TC’s uncertainty 

equated with the concentration on deterministic predicting models. Presently, the probabilistic predicting of TC 

mostly implements the statistical and ensemble model [7]. 

Artificial intelligence (AI) models have currently prepared important developments in demonstrating and 

predicting in the earth sciences [8]. Also, AI has created major development in TC predicting, and the longer-term 

prediction of cyclone tracks has exceeded the act of prediction centers [9]. With the growth of ML models, 

particularly the arrival of neural networks by the activation function, numerous innovative techniques are used to 

estimate TC. The authors used Artificial Neural Networks (ANN) to increase the performance of non-linear 

autoregressive methods which predict cyclone conflicts [10]. Also, deep learning (DL) methods like employing a 

Convolutional Neural Network (CNN) that was intended to procedure imageries completely, were generally 

functional to acquire features from the satellite image data. 

Zhao et al. [11] designed a multi-task learning algorithm called Multi-Task Graph Residual Network (MT-GN) to 

estimate and categorize the TC intensity from the FY-4A geostationary meteorological satellite image. New 

benchmark data was gathered from the FY-4A satellites for the intensity estimation and TC classification tasks. In 

our dataset, four dissimilar methods to the intensity estimate of TCs and classify TCs are compared. We found that 

accurate estimation and classification of TCs are accomplished, which needs co-related knowledge from all the 

processes. Therefore, a convolutional feature extractor was trained in a multi-task way. Moreover, a task-

dependency embedding model is constructed by utilizing GCN that achieves better results. Kim et al. [12] 

introduce a CNN model for 24-hour predictions of the TC intensity changes and quick intensification over the 

western Pacific. The DeepTC is trained by means of amplitude focal loss, for capturing larger intensity changes, 

and rapid intensification (RI) events. 

In [13], a TC intensity estimation technique using satellite images using the Xception architecture as a backbone. 

The key concept is to estimate the highest wind speed of TC through the image feature extractor. Firstly, the 

Laplacian pyramid image fusion technique for the water vapour (WV) and infrared (IR) channels of satellite 

images has been used to improve the overall quantity of input data. Next, an optimization technique for the width 

and depth of the Xception architecture is introduced to improve the estimation accuracy and reduce the parameter 

redundancy. Moreover, a dual attention module focuses on the important region of cyclone images. Kumar et al. 

[14] developed a TC intensity prediction LSTM with CSO. The LSTM technique is enhanced through CSO method 

for reducing the prediction errors and improving accuracy. 

Tian et al. [15] developed a dynamic balance CNN to resolve these challenges. The model has two different 

branches, the former is learning of raw information, and the latter is the learning of strong (weak) TCs. The model 

is adjusted dynamically by the tradeoff parameter from the learning of raw information to the strong (weak) TCs, 

thereby decreasing errors in underestimation of strong (weak) TCs. In [16], proposed a new DL-based TC intensity 

prediction network called Pre_3D that extracts inter- and intra-feature of TC intensity. An MLP network achieves 

versatile combination of the two features for correct estimate of TC intensity. In [17], proposed a new TC intensity 

estimation technique for the TC intensity estimate from the multi-spectral infrared images. The deep multisource 

attention network (DMANet) is introduced to design the dynamics of the spatial dimension and multispectral 

infrared images. 

This article introduces Neutrosophic TOPSIS with Artificial Intelligence Driven Tropical Cyclone Intensity 

Estimation (NTOPSIS-TCIE) technique for Weather Prediction. The presented NTOPSIS-TCIE technique 

determines the intensities of the TC which in turn helps to forecast weather. In the NTOPSIS-TCIE technique, 

median filtering (MF) approach is used to remove the noise in the images. In addition, the features are extracted 

using deep convolutional neural network (CNN) model. To enhance the performance of the CNN model, Harris 

Hawks Optimization (HHO) algorithm is applied. Lastly, the NTOPSIS approach was deployed for the prediction 

of TC intensities. The performance of the NTOPSIS-TCIE technique can be studied using TC image dataset and 

the results signify its promising results over other models.  
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2. Background Information 

Definition 1: Consider 𝑋 as a space of objects (points) with typical components in 𝑋 characterized by 𝑥 [18]. The 

single‐valued neutrosophic set (SVNS) 𝐴 in 𝑋 is represented as truth membership function (MF) 𝑇𝐴(𝑥), 

indeterminacy MF 𝐼𝐴(𝑥), and falsity MF 𝐹𝐴(𝑥). Following, an SVNS A is characterized as 𝐴 = {𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 

𝐹𝐴(𝑥)𝑥 ∈ 𝑋}, where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0,1] for all the points 𝑥 in 𝑋. Thus, the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴 

(x) fulfils the conditions 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. The SVN number is represented as = (𝑎 𝑏 𝑐), where 

𝑎, 𝑏, 𝑐 ∈ [𝑂, 1] and 𝑎 + 𝑏 + 𝑐 ≤ 3. 

Definition 2: Consider 𝐴1 = (𝑎1, 𝑏1, 𝑐1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2) as SVN numbers, then sum between 𝐴1 𝑦 𝐴2 is 

described by: 

𝐴1 + 𝐴2 = (𝑎1 + 𝑎2‐ 𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2)                                     (1) 

Definition 3: Consider 𝐴1 = (𝑎1, 𝑏1, 𝑐1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2) as SVN numbers, then multiplication between 

𝐴1𝑦𝐴2 is described by: 

𝐴1 ∗ 𝐴2 = (𝑎1𝑎2, 𝑏1 + 𝑏2 − 𝑏1𝑏2, 𝑐1 + 𝑐2 − 𝑐1𝑐2)                    (2) 

Definition 4: Consider 𝐴 = (𝑎, 𝑏, 𝑐) as a SVN number and 𝜆 ∈ ℝ an random integer: 

𝜆𝐴 = (1 − (1 − 𝑎)𝜆, 𝑏𝜆, 𝑐𝜆), 𝜆 > 0                                     (3) 

Definition 5: Consider 𝐴 =∗ 𝐴1𝑡𝐴22 𝑡𝐴𝑛 + as a SVN numbers, whereas 𝐴𝑗 = (𝑎𝑗, 𝑏𝑗, 𝑐𝑗)𝑗 = 1,2, … , 𝑛) is defined 

by 

∑ 𝜆𝑗

𝑛

𝑗=1

𝐴𝑗 = (1 − ∏(

𝑛

𝑗=1

1 − 𝑎𝑗)𝜆𝑗 , ∏ 𝑏
𝑗

𝜆𝑗

𝑛

𝑗=1

, ∏ c
𝑗

𝜆𝑗

𝑛

𝑗=1

)                       (4) 

In Eq. (4), 𝜆𝑗 refers to the weighted of 𝐴𝑗(𝑗 = 1,2, … , 𝑛), 𝜆𝑗 ∈ [0,1] and ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 

Definition 6. Consider 𝐴∗ = {𝐴1
∗ , 𝐴2

∗ , … , 𝐴𝑛
∗ } as a set of 𝑛 SVN numbers, ∗= (𝑎𝑗 ∗, 𝑏𝑗 ∗, 𝑐𝑗 ∗) (𝑗 = 1,2, … , 𝑛), and 

𝐵𝑖 = {𝐵𝑖1, 𝐵𝑖2, … , 𝐵𝑖𝑚}(𝑖 = 1,2, … , 𝑚), (𝑗 = 1,2, … , 𝑛) is given below: 

𝑠𝑖 = (
1

3
∑(

𝑛

𝑗=1

|𝑎𝑖𝑗 − 𝑎𝑗
∗|)2 + (|𝑏𝑖𝑗 − 𝑏𝑗

∗|)2 + (|𝑐𝑖𝑗 − 𝑐𝑗
∗|)2)

1
2(𝑖 = 1,2, … , 𝑚)    (5) 

Definition 7: Consider 𝐴 = (𝑎, 𝑏, 𝑐) as an SVN number, a score function 𝑆 of SVN value, according to the truth‐, 

indeterminacy‐, and falsehood membership degree are given as: 

𝑆(𝐴) =
1 + 𝑎 − 2𝑏 − 𝑐

2
                                                     (6) 

Where 𝑆(𝐴) ∈ [−1,1] 

The score function 𝑆 is decreased to the score function if 𝑏 = 0 and 𝑎 + 𝑏 ≤ 1. 

A linguistic variable is considered as sentences or words rather than numbers in artificial or natural language and 

is formulated by the component of its term set. It is used to resolve decision‐making problems. 𝑘‐decision‐maker 

evaluates the importance of 𝑚‐alternative under 𝑛 conditions and ranks the performance regarding linguistic 

statement transformed into SVN number. The decision‐maker often uses a group of weights and the importance 

weight is based on SVN value of the linguistic term. 

3. Materials and Methods 

In this article, we have presented a novel NTOPSIS-TCIE algorithm for weather prediction. The presented 

NTOPSIS-TCIE technique determines the intensities of the TC which in turn helps to forecast weather. It contains 

distinct kinds of processes involved as MF-based preprocessing, CNN-based feature extractor, HHO-based 

parameter tuning, and NTOPSIS-based TC prediction. Fig. 1 defines the working flow of NTOPSIS-TCIE 

technique. 
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A. Image Preprocessing 

At primary stage, the NTOPSIS-TCIE technique takes place MF approach is used to remove the noise in the 

images. MF is paramount in image processing for edge preservation and noise reduction [19]. Different from linear 

filters that calculate the weighted average of adjacent pixels, MF replaces all the pixel values within its 

neighborhood median values. This technique suppresses the sudden intensity changes or outliers, making it 

especially useful to remove salt-and-pepper noise while retaining image details. 

 

Figure 1: Workflow of NTOPSIS-TCIE technique 

By considering local pixel value instead of intensities alone, MF generates smoother outcomes without blurring 

edges, which makes it a powerful tool for optimizing image quality in several applications, such as digital 

photography, medical imaging, and computer vision. 

B. Feature Extractor  

In addition, the features are extracted using deep CNN model. There are many varieties of artificial neural networks 

(ANNs), comprising CNNs [20]. CNNs are proficient in automatic learnable hierarchies of features in input image 

matrices instead of handcrafted features mined by intricate techniques. Recently, the CNN methods have 

accomplished numerous revolutionary developments in CV that comprise object tracking, segmentation, and 

classification. Due to some connections and parameters, CNN model can have the ability to share and pool the 

weight factors. A standard CNN model contains various convolution layers embedded in each other accompanied 

by the FC layer. Fig. 2 demonstrates the infrastructure of CNN. 

 

Figure 2: Structure of CNN Model 
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Input: The input of a CNN normally includes matrices of 1‐channel gray images or 3‐channel colour that have 

intensity values at every location. 

Convolution (Conv) layer: The output of final layer must be filtered in the smaller area through every Conv layer. 

Additionally, the filters have been typically smaller learnable matrices with dimensions 3x3 or 5x5. By employing 

parameter distribution, single filter has convolved through every spatial dimension for extracting a feature from 

an image. 

ReLU: In Conv layer and FCL, ReLUs were generally utilized as an activation function for presenting nonlinear 

conversion. The mathematical equation for this function will be represented as 𝑓(𝑥) = max(0, 𝑥). This can be 

proved by experimentation in which ReLU becomes greater than standard sigmoid function in the expansion of 

deep network and it avoids gradient saturation and training convergence when preserving as many possible new 

values. 

Pool: It has potential to decrease the spatial dimension of the output via down sampling the spatial dimension in a 

nonlinear way through the pooling layer. To decrease the computational rates and network parameters, it is 

essential to decrease its parameters. The input feature map has been positioned amongst two following Conv layers. 

FCL: The FCLs have been the boundary of an ANN. During final layer, there is a connection among all the neurons 

in the FCL. Several N neurons at the final FCL of such a network can produce the output by employing each input 

label. The probability of performance to every label in the 𝑁‐dimensional output will be computed through the 

softmax function. 

𝑃(𝑧𝑖) =
exp(𝑧𝑖)

∑ exp𝑁
𝑖=1 (𝑧𝑖)

                                                            (7) 

During 2nd final layer, 𝑃(𝑍) signifies the probability of forecasting the 𝑖𝑡ℎ value. For making decisions, every 

layer should be stacked together to make a CNN. 

C. Hyperparameter Tuning Process 

At this stage, the hyperparameter tuning process of CNN model was executed by use of HHO. The HHO is a 

population‐based model which connects the cooperative behavior displayed by Harris’ hawks group, together with 

their separate searching approaches like establishing blockades, hunting prey, and implementing dives [21]. The 

system functions with dual main stages such as exploration, where latent victim is recognized, and exploitation 

contains direct attack, with obstructs and dives. This HHO algorithm contains numerous stages. At first, it 

evaluates the hawk’s population vector and computes their value of fitness, besides classifying the finest location 

vector for prey. Then, it continues to adjust the resistance strength (𝐽) and early energy (𝐸) of prey, besides 

regulating its escaping energy at each iteration. These upgrades were performed utilizing Eqs (8)-(10). This 

technique permits the algorithm to dynamically adjust and improve its strategies to enhance the searching 

procedure for enhanced performance. 

𝐸0 = 2𝑟𝑎𝑛𝑑() − 1                                                               (8) 

𝐽 = 2(1 — 𝑟𝑎𝑚𝑑())                                                         (9) 

𝐸 = 2𝐸0 (1 −
𝑡

𝑡max

)                                                    (10) 

The stage of exploration is considered by attaining a prey escape energy value if the value is larger than 1. In this 

stage, the hawk location vector is repeatedly upgraded utilizing Eq. (10) to define its obstruct location. 𝐿𝐵 and 𝑈𝐵 

represent lower and upper boundaries that demonstrate the finest position and minimum fit hawk in iteration 𝑡. 

𝑋𝑚(𝑡) indicates the average population. In the stage of exploitation, 4 methods are famous: 

Soft blockade: if prey’s escape energy exceeds 0.5, then its effective escaping possibility is under 0.5. So the prey 

tries deceptive escaping, but the hawk tries the trick and finally searches it down over several blockades and 

actions. 

Hard blockade (restricted energy): If both the parameters drop under 0.5, then it represents the lack of energy. 

Soft blockade: The escape energy and ineffective escape exceeds 0.5. The prey tyres owing to consecutive hawk 

blockades, then finally fall upon prey to an amazing dive. 
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Hard blockade: If prey escapes energy is lesser than 0.5, then its ineffective escape chance is enhanced.  So the 

prey’s energy reduces and hawk hunts it unrestrained, including a surprise dive. 

The algorithm further upgrades the hawk’s location vector utilizing Eqs. (11) to (13). The algorithm completes 

after many iterations, with the fittest hawk effectively seizing the prey, representing the termination. 

𝑋⃑(𝑡 + 1) = 𝛥𝑋⃑(𝑡) − 𝐸|𝐼𝑉𝑝𝑟𝑒𝑦(𝑡) − 𝑋⃑(𝑡)|, 𝛥𝑋⃑(𝑡)                      (11) 

= 𝑋⃑pery(𝑡) − 𝑋⃑pery(𝑡)                                                             (12) 

𝑋⃑(𝑡 + 1) = 𝑋⃑pery(𝑡) − 𝐸|𝛥𝑋⃑(𝑡)|                                                  (13) 

𝑋⃑(𝑡 + 1) = {
𝑌, 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍, 𝐹(𝑍) < 𝐹(𝑋(𝑡))
                                             (14) 

The HHO model is best in feature selection (FS) when compared to other models. It specifies that HHO proficiently 

classifies and positions the most relevant features from the database. It can produce the optimum feature subsets 

and underlines its efficiency in identifying features that expressively donate to the study’s objects, possibly 

foremost to improve the performance of model.  

The fitness choice is the key factor affecting the performance of the HHO technique. The hyperparameter selection 

method includes the solution encoded process to measure the efficiency of the candidate results. Here, the HHO 

approach considers accuracy as a key criterion to develop the FF that is expressed by.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                                    (15) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                        (16) 

Where 𝑇𝑃 and 𝐹𝑃 are the true and false positive values. 

D. TC Prediction using NTOPSIS 

Lastly, the NTOPSIS approach can be deployed for the prediction of TC intensities. The TOPSIS for SVNS used 

has the following: Assume 𝐴 = {𝜌1, 𝜌2, … 𝜌𝑚} as a group of alternatives and 𝐺 = {𝛽1, 𝛽2, … , 𝛽𝑛} as a set of criteria 

and the steps are given below: 

Step 1: Define the relative importance of the experts: The specialist evaluates based on the linguistic scale, and the 

calculation is made with the related SVNN, consider 𝐴𝑡 = (𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡) the SVNS in line with 𝑡𝑡ℎ decision‐makers 

(𝑡 = 1,2, … , 𝑘).  

𝛿𝜏 =
𝑎𝑡 + 𝑏𝑡 (

𝑎𝑡

𝑎𝑡 + 𝑐𝑡
)

𝛴𝑡=1
𝑘 𝑎𝑡 + 𝑏𝑡 (

𝑎𝑡

𝑎𝑡 + 𝑐𝑡
)

                                               (17) 

𝛿𝑡 ≥ 0 and ∑ 𝛿𝑡
𝑘
𝑡=1 = 1 

Step 2: Create neutrosophic decision matrix of aggregated unique value: This is represented as 𝐷 = ∑ 𝜆𝑡
𝑘
𝑡=1 𝐷𝑡 , 

where 𝑑𝑖𝑗 = (𝑢𝑖𝑗 , 𝑟𝑖𝑗 , 𝑣𝑖𝑗) aggregate each evaluation. 𝑑𝑖𝑗  refers to the aggregation of evaluation given by the 

experts (𝑢𝑖𝑗
𝑡 , 𝑟𝑖𝑗

t , 𝑣𝑖𝑗
𝑡 ). The matrix 𝐷 = (𝑑𝑖𝑗)𝑖𝑗  is attained, where 𝑑𝑖𝑗  is a SVNN (𝑖 = 1,2, 𝑚; 𝑗 = 1,2, … , 𝑛) . 

Step 3: Define the Weight: Consider that the weight of all the criteria is represented as 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛), 

where 𝑤𝑗  indicate the relative significance of criterion 𝜆𝑡𝑤𝑗
𝑡 = (𝑎𝑗

t, 𝑏𝑗
t, 𝑐𝑗

𝑡). If it is the calculation of 𝜆𝑡 criteria by 

the 𝑡𝑡ℎ experts.  

Step 4: Construct neutrosophic decision matrix from the weighted average. 

𝐷∗ = 𝐷 ∗ W                                                                 (18) 

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗) 

Step 5: Compute the negative and positive SVNN solutions: This is categorized as cost or benefit type. 𝐺1 and 𝐺2 

re the benefit‐and the cost‐type criteria.  
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The positive solution corresponds to 𝐺1. 

𝜌+ = 𝑎𝜌+𝑤(𝛽𝑗), 𝑏𝜌+𝑤(𝛽𝑗), 𝑎𝑐𝜌+𝑤(𝛽𝑗)                    (19) 

The negative solution corresponds to 𝐺2. 

𝜌− = (𝑎𝜌−𝑤(𝛽𝑗), 𝑏𝜌−𝑤 (𝛽𝑗), 𝑎𝑐𝜌−𝑤(𝛽𝑗)                (20) 

Where: 

𝑎𝜌+𝑤(𝛽𝑗) = {
max𝑖𝑎𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺1

min𝑖𝑎𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺2,
𝑎𝜌−𝑤(𝛽𝑗) = {

min𝑖𝑎𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺1

max𝑖𝑎𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺2,

𝑏𝜌+𝑤(𝛽𝑗) = {
max𝑖𝑏𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺1

min𝑖𝑏𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺2,
𝑏𝜌−𝑤(𝛽𝑗) = {

min𝑖𝑏𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺1

max𝑖𝑏𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺2,

𝑐𝜌+𝑤(𝛽𝑗) = {
max𝑖𝑐𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺1

min𝑖𝑐𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺2,
𝑐𝜌−𝑤(𝛽𝑗) = {

min𝑖𝑐𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺1

max𝑖𝑐𝜌𝑖𝑤(𝛽𝑗), 𝑠𝑖 𝑗𝜖𝐺2,

 

Step 6: Compute the distances to the negative and positive SVNN solutions:  

𝑑𝑖
+ = (

1

3
∑{

𝑛

𝑗=1

(𝑎𝑖𝑗 − 𝑎𝑗
+)2 + (𝑏𝑖𝑗 − 𝑏𝑗

+)2 + (𝑐𝑖𝑗 − 𝑐𝑗
+)2})

1
2      (21) 

𝑑𝑖
− = (

1

3
∑{

𝑛

𝑗=1

(𝑎𝑖𝑗 − 𝑎𝑗
−)2 + (𝑏𝑖𝑗 − 𝑏𝑗

−)2 + (𝑐𝑖𝑗 − 𝑐𝑗
−)2})2              (22) 

Step 7: Computation of Coefficient of Proximity (CP): The PC of entire alternative is computed by the positive 

and negative solutions. 

𝜌𝐽̃ =
𝑠−

𝑠+ + 𝑠−
                                                            (23) 

Where 0 ≤. 𝜌𝐽̃ ≤ 1 

Step 8: Define the alternative orders: They are ordered based on they 𝜌𝐽̃. The alternative is ordered from highest 

to lowest, thus 𝜌𝐽̃ → 1 is the optimum solution. 

4. Performance Validation  

The performance validation of the NTOPSIS-TCIE approach can be studied using TC image dataset [22]. The 

dataset comprises 80 samples under four classes as defined in Table 1. Fig. 3 represents the sample images. 

Table 1: Details of dataset 

Classes No. of Samples 

Typhoon  20 

Strong Typhoon  20 

Very Strong Typhoon  20 

Violent Typhoon  20 

Total Samples 80 
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Figure 3: Sample images 

 

Figure 4: Confusion matrix of NTOPSIS-TCIE model under 70%TRAS 

Fig. 4 establishes the confusion matrix attained by the NTOPSIS-TCIE algorithm under 70%TRAS. The outcomes 

implied that the NTOPSIS-TCIE methodology has accurate recognition and classification of all 4 classes 

accurately. 
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Figure 5: Confusion matrix of NTOPSIS-TCIE model under 30%TESS 

Fig. 5 depicts the confusion matrix produced by the NTOPSIS-TCIE system under 30%TESS. The outcome stated 

that the NTOPSIS-TCIE approach has effectual recognition and classification of all 4 classes correctly. 

The weather prediction outcome of the NTOPSIS-TCIE system is tested under 70%TRAS and 30%TESS in Table 

2 and Fig. 6. The outcome implied that the NTOPSIS-TCIE method has resulted in enhanced performance. On 

70%TRAS, the NTOPSIS-TCIE approach reaches average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 93.75%, 

88.92%, 87.92%, 95.94%, and 87.32%, correspondingly. Likewise, on 30%TESS, the NTOPSIS-TCIE system 

obtains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.83%, 93.06%, 90.83%, 97.12%, and 91.21%, 

correspondingly. 

Table 2: Weather prediction outcome of NTOPSIS-TCIE technique under 70%TRAS and 30%TESS 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 

TRAS (70%) 

Typhoon 96.43 100.00 86.67 100.00 92.86 

Strong Typhoon 92.86 100.00 73.33 100.00 84.62 

Very Strong 

Typhoon 
94.64 82.35 100.00 92.86 90.32 

Violent 

Typhoon 
91.07 73.33 91.67 90.91 81.48 

Average 93.75 88.92 87.92 95.94 87.32 

TESS (30%) 

Typhoon 95.83 83.33 100.00 94.74 90.91 

Strong Typhoon 95.83 100.00 80.00 100.00 88.89 

Very Strong 

Typhoon 
95.83 100.00 83.33 100.00 90.91 

Violent 

Typhoon 
95.83 88.89 100.00 93.75 94.12 
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Average 95.83 93.06 90.83 97.12 91.21 

 

 

Figure 6: Average of NTOPSIS-TCIE technique under 70%TRAS and 30%TESS 

 

Figure 7: 𝐴𝑐𝑐𝑢𝑦 curve of the NTOPSIS-TCIE technique 

The performance of the NTOPSIS-TCIE algorithm is clearly projected in Fig. 7 in the procedure of training 

accuracy (TRAA) and validation accuracy (VALA) curves. The outcome displays beneficial interpretation of the 

behaviour of NTOPSIS-TCIE algorithm under distinct epoch count, signifying its learning method and 

generalization abilities. Noticeably, the outcome infers a steady improvement in the TRAA and VALA with 

development in epochs. It makes sure the adaptive nature of the NTOPSIS-TCIE algorithm in the pattern 

recognition process on both data. The rising trend in VALA outlines the ability of the NTOPSIS-TCIE approach 

to adapt to the TRA data and excel in offering accurate classifiers on unnoticed data, demonstrating robust 

generalization proficiencies. 

Fig. 8 determines a complete representation of the training loss (TRLA) and validation loss (VALL) results of the 

NTOPSIS-TCIE approach over distinct epochs. The progressive decrease in TRLA highlights the NTOPSIS-TCIE 

system optimizing the weights and diminishing the classification error on both data. The outcome signifies a clear 
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understanding of the NTOPSIS-TCIE approach's association with the TRA data, emphasizing its ability to capture 

patterns from both data. Remarkably, the NTOPSIS-TCIE model continually improves its parameters in decreasing 

the differences between the predictive and real TRA classes. 

 

Figure 8: Loss curve of the NTOPSIS-TCIE technique 

 

Figure 9: PR curve of the NTOPSIS-TCIE technique 

Examining the precision-recall (PR) curve, as exhibited in Fig. 9, the outcome ensured that the NTOPSIS-TCIE 

algorithm progressively achieves greater value of PR under each class. It verifies the improved capabilities of the 

NTOPSIS-TCIE approach in the identification of different classes, demonstrating the ability of the detection 

classes.  

Additionally, in Fig. 10, ROC curves created by the NTOPSIS-TCIE algorithm are depicted in the classification 

of various labels. It offers detailed understanding of the tradeoff among TPR and FRP under distinct detection 

threshold values and epoch counts. The outcome emphasized the improved classifier outcome of the NTOPSIS-

TCIE methodology under all classes, outlining the efficiency in addressing several classifier issues. 
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Figure 10: ROC curve of the NTOPSIS-TCIE technique 

Table 3 and Fig. 11 display the overall comparison results of the NTOPSIS-TCIE technique with other models. 

The figure highlighted that the NTOPSIS-TCIE technique gains better performance. Based on 𝑎𝑐𝑐𝑢𝑦, the 

NTOPSIS-TCIE approach offers enhanced 𝑎𝑐𝑐𝑢𝑦 of 95.83% whereas the VGG16, VGG19, InceptionV3, 

GoogleNet, MLP, and DBN systems gain lower 𝑎𝑐𝑐𝑢𝑦 of 94.23%, 94.12%, 91.63%, 90.85%, 90.31%, and 93.22%, 

correspondingly. Furthermore, based on 𝑝𝑟𝑒𝑐𝑛, the NTOPSIS-TCIE technique offers increased 𝑝𝑟𝑒𝑐𝑛 of 93.06% 

whereas the VGG16, VGG19, InceptionV3, GoogleNet, MLP, and DBN systems gain lesser 𝑝𝑟𝑒𝑐𝑛 of 90.25%, 

92.53%, 91.73%, 91.91%, 92.2%, and 90.8%, correspondingly. Eventually, based on 𝐹𝑠𝑐𝑜𝑟𝑒, the NTOPSIS-TCIE 

algorithm attains maximal 𝐹𝑠𝑐𝑜𝑟𝑒  of 91.21% whereas the VGG16, VGG19, InceptionV3, GoogleNet, MLP, and 

DBN methodologies reach lesser 𝐹𝑠𝑐𝑜𝑟𝑒 of 88.82%, 89.88%, 89.46%, 88.51%, 89.33%, and 90.77%, 

correspondingly.   

Table 3: Comparative analysis of NTOPSIS-TCIE technique with other models  

Classifiers 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 

NTOPSIS-TCIE 95.83 93.06 90.83 91.21 

VGG16 Model 94.23 90.25 89.5 88.82 

VGG19 Model 94.12 92.53 87.9 89.88 

InceptionV3 91.63 91.73 85.47 89.46 

GoogleNet 90.85 91.91 89.19 88.51 

MLP Algorithm 90.31 92.2 88.97 89.33 

DBN Model 93.22 90.8 86.73 90.77 
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Figure 11: Comparative analysis of NTOPSIS-TCIE technique (a) 𝐴𝑐𝑐𝑢𝑦, (b) 𝑃𝑟𝑒𝑐𝑛, (c) 𝑅𝑒𝑐𝑎𝑙 , and (d) 𝐹𝑠𝑐𝑜𝑟𝑒 

5. Conclusion 

In this study, we have presented a novel NTOPSIS-TCIE algorithm for weather prediction. The proposed 

NTOPSIS-TCIE method determines the intensities of the TC which in turn helps to forecast weather. It contains 

diverse kinds of processes involved as MF-based preprocessing, CNN-based feature extractor, HHO-based 

parameter tuning, and NTOPSIS-based TC prediction. At primary stage, the NTOPSIS-TCIE technique takes place 

MF approach is used to remove the noise in the images. In addition, the features are extracted using deep CNN 

model. To enhance the performance of the CNN model, HHO algorithm is applied. At last, the NTOPSIS approach 

can be deployed for the prediction of TC intensities. The performance of the NTOPSIS-TCIE technique can be 

studied using TC image dataset and the results signify its promising results over other models.  
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