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Abstract

The objective of this paper is to study the expansion of symbolic 2-plithogenic and symbolic 3-plithogenic real
functions in one variable with real series, where many famous expansions will be presented according to the Taylor
series applied for symbolic plithogenic functions defined over symbolic plithogenic rings. Also, we provide many
related examples to clarify and to explain the expansion method and properties.
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1. Introduction and preliminaries:

The concept of symbolic n-plithogenic set was proposed in [3], as a novel generalization of fuzzy sets with many
interesting properties that are very similar to neutrosophic sets [4, 11-12]. These sets were used widely to study the
algebraic generalized structures generated from them such as symbolic n-plithogenic rings [1,5,8,9], matrices [16-19],
modules, and spaces [7].

In [21], symbolic 2-plithogenic and 3-plithogenic real functions were defined and formulated by using a general kind
of AH-isometry, with many interesting applications through many different scientific fields [3, 14-15, 22-26]. Also,
many generalizations of symbolic n-plithogenic numbers can be found in [27].

In this work, we use the formulas of some symbolic 2-plithogenic and 3-plithogenic real functions in one variable
[21], and we present a method to expand those functions by symbolic w-plithogenic and 3-plithogenic version of
Taylor's series. Also, we explain the efficiency of the novel expansion by many other examples applied to symbolic
3-plithogenic functions in one variable, and symbolic 2-plithogenic functions in one variable.
First, we recall some basic concepts and definitions:
Definition [1]
The symbolic 2-plithogenic ring of real numbers is defined as follows:

2 —SPy ={to + t,P, + t,Py;t; € R,P, X P, = P, X P, = P,,P,* = P,* = P,}
The addition operation on 2 — SPy is defined as follows:
(to + t1Py + t,P) + (g + 4Py + £5Py) = (Lo + £0) + (81 + £)P + (3 + £5)P,
The multiplication on 2 — SPy is defined as follows:
(to + t1Py + t,P)(Eo + 1Py + 65P,y) = toty + (toty + tyty + t161)Py + (tots + tils + toty + toly + tyt)P,
Remark.
IfT =ty +t,P; +t,P, €2 — SPg, then:

-1=l=i[1_i [1 _1] .
T r et o nl Pt o T P With to # 0,60 + 6 # 0,80 + £y + £, # 0,

Definition. [21]
Let2 —SP; = {a + bP, + cP,; a, b, c € R} be the 2-plithogenic field of real numbers, a function f = f(X):2 —
SPp, — 2 — SPy is called one variable symbolic 2-plithogenic real function, with
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X =xy+xP; +x,P, €2 —SP;.
Definition [21]
Let 2 — SPg be the symbolic 2-plithogenic field of reals, we define its AH-isometry as follows:
I:2 —SPy = R X R X R such that:
I(x+yP +2zP,) = (x,x+y,x+y+2z).
It is easy to see that I is a ring isomorphism with the inverse:
I"1:R X R X R > 2 — SPg such that:
I7'(x,y,2) =x+(y —x)Py + (2 = y)P
Definition [21]
Let f:2 — SPy = 2 — SPg be a symbolic 2-plithogenic real function with one variable, we define the canonical
formula as follows:
7Y o I(f):2 — SP; —» 2 — SP,
Definition [21]
Let3 —SP; ={a+ bP, + cP, + dP,;a,b,c,d € R} be the 3-plithogenic field of real numbers, a function f =
f(X):3 —SPg = 3 — SPy is called one variable symbolic 3-plithogenic real function, with
X =x¢+xP; +x,P, + x3P; € 3 —SP;.
Definition. [21]
Let 3 — SPg be the symbolic 3-plithogenic field of reals, we define its AH-isometry as follows:
I1:3 —SPr & R X R X R X R such that:
I(x+yP, +2zP, +tPy)) = (x,x+y,x+y+z,x+y+z+1t).
It is easy to see that I is a ring isomorphism with the inverse:
I"1:R X R X R X R — 3 — SPg such that:
"y, z,) =x+ (y—x)P,+ (z—y)P, + (t —2)P;
Definition [21]
Let f:3 — SP;r = 3 — SPg be a symbolic 3-plithogenic real function with one variable, we define the canonical
formula as follows:
I o I(f):3 —SP; —» 3 — SPg

Example.
Considerf(X) = X? — P, + P;, its canonical formula is:
(X)) = UX)]? 4+ I(—Py + P3) = (x0, %0 + X1, %o + X1 + X3, + X1 + X3 + x3)? + (0,—1,-1,0)

= (%02, (g + )2 — 1, (g + 1 + x3)% — 1, (xg + 21 + x5 + x3)?)
7o I(F0) =
xo? + Py[(xo + x1)? — %% — 1] + P, [(x + x1 + x2)* — (%o + x)?]

+ Py (xg + %1 + x5 + x3)% — (%9 + %, + %)% + 1]
For example:
fA+P)=(0+P)>—P, +P;=1—P, +4P;.
If we putvalues x, = 1,x; =0,x, =0,x, =1
in the canonical formula, then we get:
7o I(f(X)) = (D% + P [(1)% = (1D = 1] + P,[(1D* = (D?] + P3[(2)* = (1)* + 1] = 1 = P, + 4P;.
Main discussion

Definition:
Let 2 — SPr = {x + yp, + zp,; x,y,z € R} be the ring of symbolic 2-plithogenic real numbers, Consider the
following sequence:
U, = xp + Yn Py + 2,P; ; X, Y0, 2, are three real sequences, we define:
£1=1 U, = 11=1xn +Z£l=1ynpl +ZL=1znP2- (1)
Itis called a finite series.
If j = oo, then it is called an infinite series.
Example:

Consider: U,, = % + n—lzP1 + %Pz, then:

Yn=1Un = Z:ﬁ:l%"‘ Z?;=1$P1 +Z$1°=1%P2
Definition:

We say that Yo U, is convergent if and only if:

Y Xn ) X Y » 2, Zy are convergent.
Otherwise, it is called divergent.
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Remark:

NifYx,=a, Yy, =b,Xz, =c,then} U, =a+ bP;, + cP,.
2] if ) U, is divergent, we say that Y., U, = o

Example:

Consider the function: f:2 — SPg — 2 — SPg such that:

f(xg + %Py + x,P,) = e*0 + e*1P; 4+ e*2P,, then:

IR X ED
- n!
n=0
o ()"
X1 —
167 = Z n!
n=0
Xy _ (x)"
en= n!
n=0
So that:
w Xo" w X" w X2t o X" +x1"Pi+x,™P,
f(X) = Zn:O% +Zn:0ﬁpl + Zn:O%PZ = Zn 0%
Example:

Consider the functions: f:2 — SPy — 2SPg ,9:2 —SPg » 2 —SPr ,h:2 —SPy — 2 — SPy such that:
f(xg+ x1P; + x,P,) = sin(xy) + sin(xy)P; + sin(x,) Py,
g(xo + x,P; + x,P,) = cos(x,) + cos(x,)P; + cos(x,)P;,,
h(xq + x,P; + x,P,) = sin(x,) + cos(x;)P; + sin(x,)P,,

we have:
0 L (2n+1)!
sin(ry) = S EDAT
! 2n+1)!
sinGeyy = S DR
z (2n + 1)'
cos(x) = Z( 2
— oo _1) 2n
{cos(xy) = Z, Zn)! X1
D"
cos(x,) = (2n)'
n=0
Hence, f(x) = Y-, (;;1)111)! [xo2" ! + x 2"+1P1 + x,2"*1p, ]
(_1)71 2n 2n 2n
gx) = 2n)! [0 + x,“"Py + x,°" Py ]
n=0
N D" 2n+1 2n+1 =" 2n
hx) = Zo[m (o™ 4 2P 2 T )
n=
Example:

Consider f:2 — SPg — 2 — SPg such that:

f(xg + %Py + x,P,) = In(xy) + In(xy) P, + In(x,) P,
g:2 — SPgr — 2 — SPg such that:

g(xg + x,P; +x,P,) = e* +In(x,) P, + In(x;) Py,
h:2 — SPgr — 2 — SPy such that:

h(xq + x, P, + x,P,) = In(x,) + e*oP; + e*2t¥1pP,
we have:
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m@a—zc')(%—n”

n=1

had -1 n-1
Y = > E -

had -1 n-1
InGe) = Y 0~ 1)1

=N,
And: eX2tx1 — YO, (x1+x2)n
n!
So that:
had (_1)11—1
f@=> [(to = D" + (i = D'y + (5 = D"y
n=1 n
© xon had (_1)n—1 . .
g0 = ) 2ot Y [ — D+ Gy — Dy
1010=0 ) n=1 -
(_1)n n 1 n n
R = D S G = D"+ ) — (x"Py + (1 + %))
n=1 n=0
Example:

Consider the functions:

f:2—-SPg »2—SPy

g:2—SPr - 2—SPy

h:2—-SPg - 2—SPy

such that:

f(xg + x,P; + x,P,) = e*17%0 + sin(x, — 2x,) P; + cos(x;y) P,

g(xg + x1P; + x,P,) = sin(3xy) + In(xy + x1 + x,) P; + cos(2x,) P,
h(xg + %, Py + x,P,) = cos(xy + x) + e*1t¥ 2% P, + In(2xq — x1) Py,
we have:

sin(x, — 2x,) = (2(n_+)1)' (xg — 2x)™H1
—1)"
cos(xy) = ((Zn;! (xz)zn
e 1 n
sin(3x;) = —(Z(n +)1)! (3x)#*1
n=0
In(xg +x; +x,) = Z (_;)n (o + 21+, — D"

[ee] _1 n
(=D yon

cos(2x,) = (Zn)! (2x,

cos(x; + x4) Z (;n;l (x1 + x0)*"
n=0

1
e¥1tx2=¥0 = Z_ (g + x5 — xp)"
n!
n=0

[oe]

In(2xy — x;) = Z D" (2xyg—x; — D"
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So that:
fe) = ZO—(X1 xo)" + Z (2(_+)1),( — 2x7)*" Py + Z ((; %, X%3)*"P,
— (_1)71 2n+1 (_ )Tl _ n (_1)7’L 2n
gx) = nzom. (3x1) +nZ - (xg+x; +x, = DR +n=0 —(Zn)! (2x9)*"P,
N (_1)71 2n N 1 n N (_1)7’L n
h(x) = , @n)! (g + xp) +;E.(x1 +x, — x)"P; +nZl - (2xg —x, — 1D)"P,
Definition:

Let3 —SPg = {x+yP,+zP, + tP;;x,y,2,t € R} be the ring of symbolic 3-plithogenic real numbers, consider
the following sequence: U,, = x;,, + Y, Py + z,P; + t,Ps; X, Yn, Zn, t,, are four real sequences, we define:
) =1 Un= £1=1xn + Zil=1 YnPr + ZL:lZnPZ + Zil=1 tP3s (2)
It is a symbolic 3-plithogenic finite series.
For j = oo, we get the infinite case.
The convergent and divergent symbolic 3-plithogenic series is defined as the case of symbolic 2-plithogenic case.
Example:
Consider the following functions:
fi3—SPg »3—SPg
g:3—SPg »3—-SPy
h:3 —SPg — 3 —SPg
k:3 —SPg — 3 —SPg
1:3—SPg = 3—SPg
s:3—SPg »3—-SPy
Such that:
f(xg + %Py + x,P, + x3P3) = e*0™1 4+ In(x;) P, + sin(x,) P, + cos(x3) Ps,
g(xg + x, Py + x,P, + x3P3) = In(xy — x,) + e*2P; + cos(x, + x3) P, + sin(x3) P,
h(xg + x1P; + x,P, + x3P;3) = e* + cos(x3 — x,) Py + sin(x, + 2x3) P, + In(xy) Ps,
k(xg + x1Py +x,P, +x3P;) =In(xy) + In(xy) Py + e*2P, + e*3P;,
[(xg + x1 Py + %3P, + x3P5) = sin(x,) + sin(x;) P; + cos(x;) P, + cos(x3) Ps ,
s(xg + x, Py + x, P, + x3P3) = e¥3t¥1 + e¥o7¥1P, 4 In(2x, — 5x3) P, + cos(xg + 4x,) Ps ,
We have:

-1
eXo+x1 — Z ;(xo + xl)n
n=0
Inx; = Z( n) (x, — D"
n=1
I G
sinxz = Z)(Zn + 1)
n=
N Gl 2n+1
COS X3 = Z ' n+
) ] (2n)
" (D"
InCxy = %) = == (xp = x, = 1"
n=1
e*2 = Z l(x )ik
=) 0
n=0
" (D"
cos(xy + x3) ] (xo + x)°"
n=
. — D" 2n+1
Sin x3 = 0(2n—'|':|.)!(x3) n
n=

And
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[oe]

e = ()

G
cos(xz — x;) = ((Zn;! (x5 — x)%"
—1)"
sin(x, + 2x3) = %(x2 + 2x3)%nt1

o 1 n
lnxozz( n) (g — D™

Inx, = Z (-1 )n -n"
Inx; = Z (-1 )n -
W=Z%mw
n=0

[oe]

m= Y

n=0

And:

And:

And:

In(2x, — 5x3) = Z S

cos(xg + 4x,) = Z

(2x, — 5x; — D™

(Zn)' (xo + 4x2)2n

Thus:

nr =n" -)"
fx) =¥ro ,(x0+x1)n+2n 17, (xy —D"P + X5 0(211_'_1)I 22n+1P2 + Y= 0(2 ), ZnPB

=" =" D"
g(x) = Zn=1T(x0 — X2 — 1) + Xn- 0_,x2nP1 + Xn=o (xo + x2)*"P, + Zn:o X321 Py

(2n)! 2n+1)! X3
o 1 © =" o (D"
h(x) = Zn:OExon + Zn:o (Zn), (xs xz) P+ Y00 (xp + 2x3)*" 1P, + X0y n (xo —1)"P5
o (D
k(x) = Zn:lT(xo -D"+ Zn:1

(2n+1)!
w 1
-D"P + anog [x;"P; + x3" Ps]
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o (D" o DT
I(x) = Zn:0—2n+1)! [x®™ ! + %, 2P ] + X ! [x,%"P, + x32"Ps]
o 1 0 (_1)71 [o%e} (_1)11
s(x) = anoa[(xs +x)" + (X — x)"P;] + Zn:l_n (2x; = 5x3 — 1)"P, + ¥ @t (xo + 4x,)°" .

Definition:
Let4 —SPg = {x+yP, +zP, + tP;;x,y,2,t,5s € R} be the ring of symbolic 4-plithogenic real numbers, consider
the following sequence: U,, = x,, + Y, P; + 2, P, + t,,P5 + S, Py; X, Yo Zns try Sy, @r€ five real sequences, we define:
£1=1 U, = 7]1:1xn + Zi:1 YnPr + ZL:1ZnP2 + 211=1 t,Ps + Zi:1SnP4 3)
It is a symbolic 3-plithogenic finite series.
For j = oo, we get the infinite case.
The convergent and divergent symbolic 4-plithogenic series is defined as the case of symbolic 2-plithogenic case.
Example:
Consider the following functions:
fi4—SPg —4—SPy
g:4—SPg —4—SPy
h:4—SPy — 4 —SPy
k:4 —SPy — 4 —SPy
l:4 —SPy = 4—SPy
Such that:
f(xo + %Py + X, Py + x3P3 + X, P,) = e¥07%¢ + ¥1t%4p, | gX27X3P, 4 ¥3P, + e¥4P,,
We have:

[oe]

1
eroH = ) — (g = x,)"

n=0

(oo}
1
e¥1tXs — Z m(xl + x4)n
n=0 )
[ee]
e¥2=X3 — l(x —x )n
nl 2 3

n=0
[ee]

W=Z%mw

n=0
[ee]

e =Y )

\ n=on!

» (12" n o (CDFH 2n+1

ThUS, g(x) = ZTL:O (Zn)! (2x1 + xz) + Zn=0 2n+1)! (X3) P1 + .-

h(x) = cos(x, — 5x4) + cos(x; + x3) P; + sin(x, + x,) P, + In(x) P; + In(xy + 3x1) Py,

' D™ -
cos(xy — 5xp) = W(M — 5xq)
; _1 2n
cos(x; +x,) = Z %(3@ + x,)%"
. N o
sin(x, + x3) = 2n + DI (x2 + x3)
w 1y
Inx, = Z( n) (xo — D"

- (D"
In(xy + 3x;) = Z - (xg +3x; — D™
n=1

k(x) = e¥ot*1mXap, 4 ¢¥4=3%1p, e have:
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[oe]

1
(ex0+x1—x4 = Z m(xo +x —x)"

n=0

1
ex4—3x1 — Z m (ex4—3x1)n

n=0
Thus, k(x) = ¥3-¢ ,[(xo + 21— x4)"Py + (x4 — 3x1)"Py]
I(x) =In(2x; + xz) P, +1In(x; — 5x,) P; + e*3P,], we have:

=" n
In(2x; + x,) = (2x; +x,—1)

n=1

G
{In(x3 —5x,) = (x3 —5x, — D"
n=1 n
e¥s = ix n
- n!”3

n=0

Thus, 1(x) = X2y S5 (2 + 5, — D'y + (x5 — 5%, — D3] + Bitso = (x5)"

The expansion of some famous plithogenic real functions.
The following formulas are proved in [21].
1] ex0+x1P1+x2P2 — exo + Pl[ex0+x1 _ exo] + Pz [ex0+x1+x2 _ ex0+x1].
2] ex0+x1P1+x2P2+X3P3 = e%0 4 Pl[ex0+x1 _ exo] + Pz[ex0+x1+x2 _ exo+x1] + P3[ex0+x1+x2+X3 _ ex0+x1+x2]
3] In(xy + %, P; + x,P;) = In(xg) + Py [In(xy + x1) — Inxg] + Py [In(xy + x; + x3) — In(xg + x1)]
A In(xg + x, Py + x5, P, + x3P3) = Inxy + Py [In(xg + x1) — Inxo] + Py[In(xy + x; + x5) — In(xg + x,)] +
Py[In(xy + x; + x5 + x3) — In(xg + 21 + x3)]
5] sin(xy + x, P, + x,P,) = sin(x,) + P;[sin(xy + x;) — sinxy] + P,[sin(xy + x; + x5) — sin(xg + x1)]
6] sin(xy + x, P; + x,P, + x3P3) = sinxy + P;[sin(xg + x;) — sinxg] + P,[sin(xy + x; + x5) — sin(xg + x1)] +
Py[sin(xg + x; + x, + x3) — sin(xy + x; + x3)]
7] cos(xg + x1 Py + x,P,) = cos(xy) + P;[cos(xg + x;) — cosxg] + P,[cos(xy + x; + x5) — cos(xy + x1)]
8] cos(xy + x, Py + x,P, + x3P3) = cosxg + Py[cos(xg + x1) — cosxg] + Py[cos(xg + x1 + x3) —
cos(xy + x1)] + P3[cos(xy + x; + x5 + x3) — cos(xg + x; + x3)]
The series formulas are:
1] eroruabirn: = v~ [xa" + [0x0 +30)" = 301y + Pal(o 1 +32)" = (o + )™
2] eFotxaPrtaabatashs — ¥ o [xo + [(o + 2™ = x™|Py + [(xg + 21 + 22)™ — (xg + x)" P, +
[Ceo 4 %1 + %2 + x3)™ — (xo + X1 + x3)" P5]

1
3o + x3Py + %2P) = Bpey S5 [(ro — D)™ + [ + 25 — 1) — (o — DPIPy + [ + 21 + 3, — 1) —
(xo + 2, — D)"P,

_1\n

4] In(xg + x;, Py + x,P, + x3P3) = Z%°=1% [(o — D™ + [(xg + 24 — D" = (g — D"]P +
[(xo +x1 +x2 —1)”—(x0+x1— 1)11]P2 + [(xo +x1 +x2 +x3_ 1)n_(xO+xl+xZ _1)Tl]P3]

5] sin(xo + x1 Py + x,P,) = X3 (;ni)l), [ 2™ 1 + [(xg + x1) 2™ — x02" 1Py + [(x + x1 + x5) 2™ —

(xo + )" 1] P,

Ol sin(o + 21y + 2P, + 25Pa) = Jnmo (;;131”)! [62™+ + [(xg + 20) 2™ — 2”1 Py + [(x + %1 + 25)°F —
(xo + x)2 P, + [(xg + X1 + x5 + 23) 2 — (xo + x,)2™T 1P,

(-p3"
7] cos(xg + x1 Py + x,P;) = X3 ) [x0?™ + [(xo + 21)%™ — x0*"]Py + [(x + X1 + %)% = (x0 + x1)*"]P,
(_1)271
8] cos(xg + x Py + %P5 + x3P3) = ¥, @0 [x02™ + [(x0 + )%™ — xo2]P; + [(xg + x1 + x5)?™ —

(x0 + x1)2n]Pz + [ + %1 + x5 + x3)2n —(xo+x; + xz)zn]P3]-

5. Conclusion
In this work, we have studied the expansion of symbolic 2-plithogenic and symbolic 3-plithogenic real functions in
one variable with real series, where we provided many related examples to clarify and to explain the expansion
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method and properties.
In the future, we aim to generalize our study to symbolic n-plithogenic functions and symbolic n-plithogenic series.
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