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Abstract

In multi-criteria decision-making scenarios involving real numbers, interval numbers, and a combination of
membership and non-membership grades, accurate decision-making is crucial yet challenging. The integra-
tion of diverse grade values into a single value poses a significant challenge for decision-makers. To address
this issue, this study introduces the concept of a cubic Pythagorean fuzzy hypersoft set, facilitating information
aggregation without ambiguity. The characteristics of correlation coefficients and aggregation operators are
emphasized, underscoring their importance in decision-making processes. An algorithm based on correlation
coefficients (CC) is proposed for the TOPSIS method, which ranks preferences based on their similarity to
the ideal solution, applied here to examine how college students cope with academic stress. Furthermore,
the efficiency of the proposed method is demonstrated through a comparative study, wherein the correlation
coefficient in the TOPSIS method is contrasted with existing distance measures (DMs). Results indicate the su-
periority of CC in the TOPSIS method over DMs. In addition to comparing the proposed method with existing
distance measures, the efficacy of the proposed approach is further demonstrated through a comparative analy-
sis with established neutrosophic distance measures. This comprehensive evaluation highlights the robustness
and versatility of the proposed method in addressing the complexities of multi-criteria decision-making sce-
narios, particularly in assessing stress management strategies among college students, thus providing valuable
contributions to decision-making contexts. This study contributes to enhancing decision-making processes,
particularly in evaluating stress management strategies among college students, thereby offering valuable in-
sights for academic contexts.

Keywords: hypersoft set; Pythagorean fuzzy set; cubic Pythagorean fuzzy set

1 introduction

With the seminal introduction of the fuzzy set (FS) by Zadeh," the study of uncertainty witnessed a significant
surge in scientific exploration. This foundational concept paved the way for numerous theoretical extensions
and generalizations, propelling its application across various domains. These extensions include interval-
valued FS (IVFS)Z intuitionistic FS (IFS),2 cubic set,* Pythagorean FS (PFS),” interval-valued PFS (IVPFS),®
cubic PFS (CPFS),Z among others. Notably, the introduction of the soft set (SS) by Molodsov® revolutionized
the parameterization of subsets within any universal set. Furthermore, Smarandache elucidated the concept
of hypersoft set (HSS), underscoring its significance over traditional SS.

Songsaeng and Tampan!? delved into the intricate relations among neutrosophic cubic UP-subalgebras, shed-
ding light on their interplay and significance within mathematical frameworks. Khan et al'!' introduced the
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innovative concept of b-picture fuzzy SS (b-PFSS) and its generalization, which is based on bijective SS,
contributing to the advancement of fuzzy set theory. In a related vein, Chinnadurai et al2 proposed a solu-
tion to multi-criteria decision-making (MCDM) quandaries in candidate selection processes using cubic soft
matrices (CSM), underscoring its efficacy in real-world decision scenarios. Building upon this, Chinnadu-
rai and Bobin! innovated the reversal ranking method employing max-min operations within CSM, offering
a novel approach to decision-making optimization. Abbas et al'* introduced CPFS, delineating member-
ship degrees in IVPFS and non-membership degrees in PFS, thus enriching the understanding of hybrid fuzzy
structures. Expanding the horizons of fuzzy set theory, Alhazaymeh et al'l% elucidated the concepts of internal-
cubic vague sets (CVS) and external-CVS through illustrative examples, providing insights into their practical
applications. Khan et al'® explored the realm of Pythagorean cubic FS (PCFS), where membership and
non-membership degrees manifest in cubic structures, extending the versatility of fuzzy set representations.
Tehreem et al' contributed to this domain by establishing operational laws and Einstein weighted geometric
aggregation operators on PCFS, enhancing its applicability in decision-making processes. Additionally, Kaur
and Garglg’19 defined and investigated the properties of cubic IFS (CIFS) and generalized CIFS (GCIFS),
offering a comprehensive understanding of their mathematical underpinnings. Joshi?? further expanded the
theoretical framework by discussing generalized PFS (GPFS) and defining average aggregation operators on
GPFS, contributing to the arsenal of tools for fuzzy set analysis. The works of Bobin et al., 2” Chinnadurai
et al.,;?® Chinnadurai and Bobin and?® contribute to the ongoing discourse in decision science by presenting
innovative methodologies that extend the applicability of the TOPSIS method to diverse decision-making sce-
narios characterized by uncertainty, ambiguity, and complexity. Lastly, Zulqarnain et al?1"*® introduced and
explored the concepts of intuitionistic fuzzy HSS (IFHSS) and Pythagorean fuzzy HSS (PFHSS), as well as
presented practical applications using aggregation operators on Pythagorean fuzzy hypersoft weighted average
(PFHSWA) and geometric (PFHSWG) operators, highlighting their utility in decision-making contexts.

The motivation driving this study is to underscore the paramount significance of CPFS. To illustrate, we
turn to the values delineated in Table 3, all of which adhere to the prescribed restriction conditions: (0 <
(TF(@(U))Q + (KF(@ (u))> <1land 0 < (TF(@(“))2 + (Ar(lz)(u))2 < 1) when presented within a CPFS
environment, while failing to meet these criteria in a cubic IFS (CIFS) setting. This disparity underscores the
heightened significance of CPFS over CIFS, as it enables decision-makers to furnish data within a CPFS envi-
ronment with minimal restrictions. Moreover, we employ aggregation operators and TOPSIS approach based
on CC to evaluate alternatives using cubic Pythagorean fuzzy HSS (CPFHSS) data. Remarkably, to our knowl-
edge, the theory, related developments, and applications of CPFHSS constitute an entire research field. Conse-
quently, the novel approach proposed in this study warrants examination and stands to offer decision-makers
a practical solution. Specifically, we provide a pertinent methodology for analyzing students’ stress-coping
mechanism skills using the CPFHSS TOPSIS method. Additionally, we conduct a comparative study, replac-
ing the CC in existing decision-making models, to demonstrate the effectiveness of our suggested method.
Thus, CPFHSS emerges as a reliable tool for predicting uncertainty, particularly when grades are expressed in
terms of membership and non-membership grades for specified attributes in a combination of interval and real
number form.

This manuscript is structured into several sections, each contributing to the exploration and application of cubic
Pythagorean fuzzy hypersoft sets (CPFHSS). Section 2 provides concise definitions, laying the groundwork
for the subsequent discussions. In Section 3, we introduce the concept of CPFHSS, elaborating on various
characteristic configurations (CC) and weighted CC of CPFHSS features. Moving forward, Section 4 outlines
the operators of cubic Pythagorean fuzzy hypersoft weighted average (CPFHSWA) and cubic Pythagorean
fuzzy hypersoft weighted geometric (CPFHSWG), elucidating their functionalities. In Section 5, we delve
into the integration of CC with TOPSIS technique, showcasing its application in decision-making contexts.
Furthermore, Section 6 underscores the significance of our proposed strategy through comparative analyses,
highlighting its effectiveness over existing methodologies. Finally, Section 7 encapsulates our findings and
contributions, with a conclusion to this study.

2 Preliminaries

To facilitate a clearer understanding of this study, we introduce the following notations: Let ¢/ denote the
universe, where u; € U, and P(U) signify the power set of ¢/. The symbol N represents the set of natural
numbers, while [0,1] denotes the closed interval of real numbers inclusive of both endpoints. C'[0, 1] refers to

https://doi.org/10.54216/IJNS.230405 64
Received: July 13, 2023 Revised: November 19, 2023 Accepted: February 24, 2024



International Journal of Neutrosophic Science (IJNS) Vol. 23, No. 04, PP. 63-82, 2024

the collection encompassing all closed subintervals within [0,1]. Moreover, Tl"(u) and AF(u) represent closed
subintervals of [0,1], depicting the membership and non-membership grades, respectively, of the element
u € U. Similarly, Yr(u) and Ar(u) denote the membership and non-membership grades of the element
u € U. Furthermore, CY signifies the collection of CPES over U.

Definition 2.1. 7 A CPFS can be represented as T' = { ({Tr(u), Yr(u)), (Ar(u), Ar(u))),

u € U}, where Tr(u) : U — C[0,1], Ar(u) : U — C[0,1], Yr(u) : U — [0,1] and Ar(u) : U — [0,1].
The lower and upper ends of Yr(u) and Ap(u) are denoted, respectively by Y (), Yr(u) and Ap(u), Ar(u),
where 0 < (Tr(u))? + (Ar(u))? < 1land 0 < (Yr(u))? + (Ar(u))? < 1.

Definition 2.2. © Let @17 @2, .. ij be attribute sets and the sub-attributes can be represented as 91 =

{11,912, o, b1}, O = {1#2171/122,- W2 Fo ooy Ok = {001, Yk, oo Vi b, Where 1 < 1 < 2, 1 < m <
y, 1 <n < zandz, y, z € N, such that ©, ﬂ®q = (), for each p,q € {1,2,....,k} and p # q. Then

the collection of multi-attributes is given as 61 X 62 X o X @k =0 = {z/fll X wém X oo X wlm} A

pair (I, @) is called a HSS over V, if there exist a mapping I' : @ — P(U). HSS is given by (T',0) =
{1 e 6,1()) € P}

3 Cubic Pythagorean fuzzy hypersoft set

The notion of cubic Pythagorean fuzzy hypersoft set CPFHSS and some fundamental aspects of CC and WCC
on CPFHSS are given below.

Definition 3.1. A pair (T, (:2) is called a CPFHSS over U, if there exists a mapping I : (:) — CY. CPFHSS is
represented as (I', ©) = {(w,F(w))WJ €eO,T(W) e CU},Where L(4) = {(<TF(1Z)(U)’ Tr(w:)(u)% <AF(T/~3) (u),

Ar(lz)(u)>)|u € U}, where Tr(é)(u) U — C0,1], ]\F(lz)(u) ‘U — C0,1], T s U — [0,1]
> (u) and A

and A 3 (u) : U — [0,1]. The lower and upper ends of TF(@ @) (u)
F(w)( u), TF(J:)( u) and Ar«m( u), A_ > (u), where 0 < (TFOZ)( u))? + (KF(J})(U))Q < 1 and
ey )2 + (A

vy (W) <1
Example 3.2. Considering the present COVID-19 pandemic, a team of psychiatrists evaluate the students
in two sessions to understand their stress-coping levels. A psychiatrist may have the following hindrances.
(1) to provide values in interval form for the first session. (ii) to provide values in real number fuzzy form
for the second session. (iii) to validate the intuitionistic restriction conditions for each session. Considering
these hindrances, let’s assume that the psychiatrist provides the values in interval for the first session (Table

D), with 0 < (Y (w)? + (AF(@(U))2 < 1 and in real values (Table 2) for the second session with 0 <
(Tre (u)?+ (Are) (u))? < 1. Combine these values to form cubic Pythagorean fuzzy values as in Table 3.

reh @
are denoted, respec-

tively by T
0< (Y

()

Let a set of psychiatrists be represented as Z/l = {pl, D2, pg, p4}. They are responsible to examine students
based on academic stress-coping skills. Let @1, @2, 93 and 94 be distinct attribute sets and sub-attributes are
given by

©; = initial phase = {111 = sensitivity to stress},

O, = intermediate phase = {121 = capacity for relaxation, ¢ = self-reliance},

O3 = advanced phase = {1)37 = proactive mindset, 1’3o = adaptability and versatility } and

©,4 = final phase = {1)4; = ability to evaluate situations}.

Then (:) = él X 62 X @3 X 94 is the distinct attribute set given by

é =é1 X 92 X 63 X é4 = {w/n} X {¢/2171/;22} X {¢/317¢/32} X {¢41}-
{1511,1/;217152'3171/341)7 (71311,1&21,1/;32,1/;41)7 (1/;11,1/;22,1/;3171/;41)7 (1/;11,1/322,7/;32711341)}-
:{ ibb ;Lb ~7¢3 /;?4}

Then the values given by the psychiatrists for each student is in the form of CPFHSS.
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Table 1: Shows stress-coping values in interval for first session.

u P1 )2 P3 P4

P1 ([0.64,0.66],[0.72,0.73]) ([0.91,0.92], [0.32, 0.35]) ([0.36,0.42], [0.61, 0.63]) ([0.48, 0.59], [0.49, 0.52])
p>  {[0.72,0.75],[0.41,0.45))  {[0.52,0.56], [0.81,0.82])  ([0.19,0.22],[0.91,0.94])  {[0.11,0.15],[0.91,0.96])
ps  ([0.22,0.25],[0.81,0.84])  ([0.77,0.79],[0.46,0.47])  {[0.42,0.46],[0.72,0.77])  ([0.34,0.37], [0.64, 0.68])
pa ([0.37,0.47],[0.73,0.75])  ([0.24,0.46],[0.49,0.69])  {[0.58,0.62],[0.71,0.73])  ([0.54,0.57], [0.71,0.75])

Table 2: Shows stress-coping values in fuzzy for second session.

u Y1 P2 V3 P4

P (0.49,0.79) (0.81,045) (0.57,0.52) (0.69,0.49)
p2 {0.55,0.75) {0.25,0.84)  (0.34,0.81)  (0.23,0.71)
ps  (0.72,0.45) (0.34,0.82)  (0.56,0.66)  (0.41,0.69)
ps  (0.56,0.61) (0.55,0.71)  (0.49,0.59)  (0.64,0.43)

Table 3: Shows stress-coping skills of a student in CPFHSS (I, ©) form.

u Y1 P2

p1 ({[0.64,0.66],0.49Y, {[0.72, 0.73],0.79Y) _ ({][0.91, 0.92], 0.81), ([0.32, 0.35], 0.45))
p2  ({[0.72,0.75],0.55), ([0.41,0.45],0.75%)  ({[0.52,0.56],0.25, {[0.81,0.82], 0.84))
ps  ({[0.22,0.25],0.72), ([0.81,0.84],0.45%)  ({[0.77,0.79],0.34}, ([0.46, 0.47], 0.82))
psa  ({[0.37,0.47],0.56), {[0.73,0.75],0.61))  ({[0.24,0.46],0.55), ([0.49, 0.69],0.71))
u P3 P4

p1 ({[0.36,0.42],0.57), ([0.61,0.63],0.52)) _ ({]0.48, 0.59], 0.69), ([0.49, 0.52], 0.49))
p2 ({[0.19,0.22],0.34), {[0.91,0.94],0.81))  ({[0.11,0.15],0.23), {[0.91, 0.96],0.71))
ps  ({[0.42,0.46],0.56), ([0.72,0.77],0.66%)  ({[0.34,0.37],0.41}, {[0.64, 0.68], 0.69))
pa ({[0.58,0.62],0.49), ([0.71,0.73],0.59%)  ({[0.54,0.57],0.64}, ({[0.71,0.75], 0.43))

Second Session

cubic Pythagorean
fuzzy values

3.1 Correlation coefficient of CPFHSS

Let CPFHSSs over U be represented as.

(1, ©1) ={(utis (DL () (), Ty ) ()]s Ty i (D)5 (A, () () Ay ) ()]s A ) (1))}
71“2(1/%)(“1‘)}7 Arg(ﬁk)(ui»}-

(T2, ©2) ={(1tss (L, () (), Ty ()]s Ty ) ()5 (A, ) (1),

Definition 3.3. The cubic Pythagorean fuzzy informational energies of (I'y, ©,) and (I'y, ©) are represented

=

as
o él) N Z |:<TF1(1Lk)(ui))2 T (AF1(¢k)(ui))2 + (TF1(1/;k)(ui))2 + (Kfl(lzk)(ui))2
k=1 i=1
+ (Trl(ik)(ui))z + (AFl(ik)(ui))Z ) (1
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2(2, 6:) Z Z { 20 W)? + (Apy g, () + (Try g, () + (Ap, g, ) (1)
+ (Apy (g ()* + (Ap, g, (w))? |- )

Definition 3.4. The correlation measure between (I';, ©;) and (', ©3) is given as

Cr((T'1,01), (I'2, ©2)) ZZ [ 2T (dp) (us)) (TFQ(ﬁp)(“i)) + (Arl(ﬁp)(ui)) * (Arz(iﬂp)(ui))

k=11i=1
+ (Trl(ﬂip)(ui)) * (Trz(ﬁp)(ui)) + (Krl(i,p)(ui)) * (Krz(i;p)(ui))
+ (Tr, (g, (i) * (T, ) (i) + (Ap, gy () % (Ap, ) () ] 3)
Proposition 3.5. Let (I'1,©1) and (T2, ©3) be two CPFHSS. Then,
(i) Cx((I'1,©1),(T'1,01)) = &(I'y, Ql)
(ii) Cy((T'2, ©2), (T2, 02)) = ®(T'2, O5).
Proof. Straight forward O

r(('1,61),(I'2,63))

Definition 3.6. The CC between (', ;) and (T'y, O5) is defined as Cc:((T'y, ©1), (Ta, ©3)) = j@(r NN
1,%91 2,92

Proposition 3.7. Let (I'y, ©,) and (1"27 O,) represent CPFHSSs. Then,
(i) 0 < Cc((T1,61), (T2, 05)) <

(ii) Cc((T'1,01), (T2, 02)) = CC((F2, ©s),(T'1,61));

(iii)If(F1,®1) = (FQ,@Q) then Cc((l“l,@l) (FQ, @2))

Proof. (i)Clearly, Cc((T'1,01), (T2, 02)) > 0
So, we show the proof of C((I'1,01), (I'2,02)) <1

Cr((T1,61), (T2,02))

—ZZ [ Yoo 5,0 0) * (Lrys) () + (A, ) (1)) % (Apy 5y (1)) + (T, () () (T g, (ug))

p=1qg=1

+ (Krl(q/}p)(uq)) * (KFQ(q/Sp)(Uq)) + (T, (g, (W) * (T, g, ) (Ug) + (Ap, (g, ) (uq)) * (Arz(ﬁp)(uq))} .

= 3 (e 000+ 000+ 00 Gy 99)+ (T g 00+ (T 00

p

+ (Krl(qLP)(Ul)) * (Krz(qu)(ul)) + (Trl(ﬁp)(ul)) * (TFQ(ﬁp)(“l)) + (Arl(zﬁp)(ul)) * (Arz(ﬁp)(ul)))

+ ((Trl@p)(w)) * (Lr, 5, (12)) + (Ap, (5,) (u2) * (Ap, 7,y (2)) + (Tp, 5, (u2) * (Tp, g, (u2))
+ (Ap, g, (W2)) * (Ary g, (42) + (T, (u2)) # (Try g, (2) + (Ap, (g, (u2) * (A, g, (u2)) ) + -
+ ((Trl(ﬁp)(“v)) * (Irm;p)(uv)) + (Arl(qﬁp)(uv)) * (AFQ(@,)(%)) + (Trl(ﬁp)(uv)) (T T2 (9p) (Uv)

+

—~

A, () W0)) * (A, ) () + (T, ) () (T, ) (u0) 4 (A, 5, () (A, 5,5 ( ﬂ

By using Cauchy-Schwarz inequality,
Cu((T1,01), (I2,02))?
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< Z [{ =Ty (Pp )(ul)) +(fr1(¢p)(u2))2+---+(Ir1(1[;p)(“u))2}

p=1

- { e, 5 0+ iy ) 02D+ iy 5, (1)

+ 1 (T, (5, (1)) (TF1<&p>(“2))2+"'+(Tr1<1ﬂp>(“”))2}

2 2
(Cry () (@)™ + (Tpy () (2))" 4 o+ (T ) (w0)

{

{

+{a Flwp)(ul)) (R gy (020 ot (B g, (0}

+]{ !
{

 {hr, (5 () + (A g (02D o (A g (07}

u

13 [{ ey (00 + @iy @) + o+ (T, (w0)? |

p=1

{5 0+ gy 02D + o+ (g, ()

+ 1 Ty ) ()7 + (Try ) (42))7 + o4 (T ) (w0))

{ }
{5 () + gy 02D+t Ry (0))*
{ }

+ L Try () ()7 (T () (W2)* oo+ (Try () (00))°

{3 )+ Ay, @)+ Ay ()]

Cu((T1,01),(T2,02))?

<ZZ[HW U)? + (g () + (T i (00 + (R g (1))

p=1qg=1

+ (Trl({;p)(uq»Q + (Ar1(¢p } lel [ =T (Pp) uq )2 + (AFQ(%)(uq))Q

+ (T, 5,y (a)* + Ay, (e)* + (Try g, () + (A, (ug))? |-

= CM((Fl,é1), (FQ,@Q))Q < ‘I)(Fl,é1) X @(Fg,ég).
= CM((Fl,él), (FQ,(:)Q)) < \/‘P(Fhél) X \/‘I)(Fg,ég)

Cr ((T'1,01),(I2,02)) <1
VO(T1,61)x/®(2,02) —

By Definition 3.6, Cc((I'1,©1), (T2, 02)) < 1.
Thus, 0 < Cc((I'1,©1), (I'2,02)) < 1

Proof. (ii) Straight forward.

Proof. (i) Cc((T'1, ©1), (T2, 02)) = ¢ZNZF((F@?X)¢(;<S2)
(F27@2)

1) =
(T2,02))

Since, (I'y, e
Cc((T'y, 1),
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S [( Tr iy (1) + (g ) (00))? + (T 5 (10))?

(Arzw ) (1g)? + (Try g, (ug))? + (Ar2<¢p)(uq))2]

\[ (S i | @ 00+ 5, ()7 + (T, 00)
<Awp (U))? + (5 (00)? + (i (00|}
f (S i Qe )+ 5, ()7 + (T, )
5, 00) 4 (T 3 (00))? + (i, ) |

= Co((T'1,01),(T2,02)) = 1. O
Definition 3.8. The CC between (I';, ©;) and (I'y0,) is defined as

CT((Flvél)a(F27é2)) )
max {@(F1,é1),‘b(r2aé2)}

Cc((T1,01), (T2, 02)) = @)

Zp 1Zq 1 {( ( q) * (Irz(d]p)(uq)) + (Arl(qu)(uq)) * (Ar2(¢?p)(uq))
+(T Ty (p )(“q)) ( T2 (9p) ( 0) + (Krl(u}p)(uq)) * (Krg(qﬁp)(uq))
T 5 (00) * (T, 3 (00) + (i, 5, (00)) 5 (5 (00

Cc((T1,01), (T2, 02)) = —
e {Zp 1 2= {( r () (1)) + (A, g, (0)* + (T, g, (49))?

Ry (00))? + (T (100)? + <AFI(¢p)<uq>>2} |
Dt 2oget [ Xy, (a)® + (Ar, g, (wa)® + (T, g, ) (ug))?

+(Ap, (g, ())? + (Tr, 5, (ug))* + (Am(qﬂp)(”q)ﬂ }

Proposition 3.9. Let (I';, 1) an (F27(:)2) be CPFHSSs. Then,
(i) 0 < Cc((L'1,01), (2 @2))
)= ((F2,@2) (T'1,61));
) then Cc((Fl,el) (FQ,@Q)) 1.

(ii) Cc((T'1, ©1), (F27@2)
(iii) If (T'1,01) = (T2, O

Proof. (i) Clearly, C~C((F1,~é1) Ty, 0,)) >
So, we show the proof of Cc((I'1, ©1), (T2, @2))
Cr((I'1,01), (I'2,02))
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v

:ZZ [ LT3 () (uq)) (Irz(zz;p)(uq)) + (Arl(lﬁp)(uq)) * (Arz(ﬁ;p)(uq)) + (Trl(ﬁ;p)(uq)) * (Trz(qﬁp)(uq))

p=1g=1

+ (Ar, g, (1)) * (Apy g, (u ))+(Tr1<z&p><uq))*(Trxz&p)(“q)H(Ar1<¢p>(“q))*(Amwp)(“q))}

<

A
f K Xr, 5,y (1)) * (Lp, g,y (1) + (Ar, 5, (W2)) * (Ap, ) () + (T, ) (W2)) * (T, 5, ()

]
Il

_|_

Ty (dp )(Ul)) (Arz(qﬂp)(ul)) + (Trl(dp)(ul)) * (Tm(ajp)(“l)) + (Arl(zﬂp)(ul)) * (APQ(ﬁp)(“l)))

(Ap
( Yo,y (w2) * (Lr, g, (w2) + (Ar, (g ) (u2)) * (Ap, gy (u2)) + (T, (g, (w2) * (T, ) (u2))

+ (Ap Ty (3, (U2)) * (Krz(lzp)(UZ)) + (Tr, (g, (w2)) * (T, g, ) (u2)) + (Ap, () (u2)) * (Arz(zﬁp)(w))) t

A

(Trl(wp)(uu)) * ( 1“2(1[,?)(“1))) + (Arl(ﬂp)(uv)) * (Arz(ﬁ,p)(uu)) + (Trl(qj,p)(uv)) * (Tr‘2(,[,p)(uv))

>

iy (00)) * (R (000) O 5 (00)) (T (00 (5 00))# (g (0)) )|
By using Cauchy-Schwarz inequality,

Cu((T1,01),(T2,02))

< {32 [{n o 7+ o+ T 0007

p=1

{0 (00 (g, 4 02) 4 (B, 5 (00)
T, ) 00 4 (T 5 (02 et (T 5 (000
(e 5 (00 + (g, 5, 00) 4 (i, (0]
#0004 ) (0, g, ()P et (T, )}
by 3 (00002 4 (5, (022 o+ (5, (000 ]

u

|:{ FZ(’l/J ) U1))2 + (IF2(1/:p)(u2))2 tot (TFz(i'p)(uv))2}

p=1

{5 (00 + (5, 00) 4 e+ (B, 5 (0]

’
- { Ty 3 000+ (T, 001+ (T 00
i

R +(AF2(W(U2))2+...+(AFM)(%))?}
{5, (00 (5, () o By 5, (1)
+{ - +<TF2<¢p)<u2»2+...+<rp2<¢p)<uv>>2}
+ 9 (Ap, g,y (1) + (Ap, g,y (u2))? + oo + (Amwp)(uv))QH }%.

Cu((T'1,61), (T2, 02))

https://doi.org/10.54216/IJNS.230405 70
Received: July 13, 2023 Revised: November 19, 2023 Accepted: February 24, 2024



International Journal of Neutrosophic Science (IJNS) Vol. 23, No. 04, PP. 63-82, 2024

<{ 35 [ s (0?0 () (T 4 (0002 + (i 5, (00

+ (T, (g, (1)) + (Arl(zzp)(“q)ﬂ

0 [, )+ i 000+ (i )+ (B 5, 00)

1

+ (Tr, 5, (1a))* + (Arzwlp)(“q))z} }
= { <max{ > {(Tn(l&p)(“q))g + (Ar, (g, () + (T, (g, (ug)?

p:l =

b (R ) (40 + (T ) (10))? +—<z\r1<¢p)<uq>>2}

x ZZ [ Lr, (5, () ))? + (Am(u}p)(uq))z +Tr2(¢p)(uq))2 + (Krz(q,zp)(uq))2
p=1q=1

2

+ (Try g, (w0)* + (AWN(U‘]))Q} })2} '

—W%ZZ[nwwfﬂ%WwWﬂnmmM+mmmM
+(Tr, 5, (1a))* + (An(&p)(“q)ﬂ

u

XZI[QW%VH%MMWH%MMM+WMMM

p=1lgq

H%MMM+WMMMH-

= CM((Fl,él), (F2762)) < max{@(Fl,él) X @(Fg,ég)}

- Crn((T1,61),(12,02)) <1.

max{@(f‘l,él)x@(f‘g,ég)

By using Definition 3.8, CC((I‘l, 0,), (FQ, 0,) <1
HCHCC 0 < Cc<(F1, @1) (FQ, @2)) <S
Proofs of (ii) and (iii) can be worked out with the proposed method given in Proposition 3.7. O

3.2 Weighted correlation coefficient for CPFHSS

Decision-makers (DMs) may assign different weights for each alternative, to facilitate the same, WCC plays
a significant role which is presented in the following section. Consider D = {D;,Ds,...,D,} and W =
{VVl7 W, .. W@} as weight vectors for alternatives and experts, respectively, such that D,,, W, > 0 and

ED =1, ZW =1

Definition 3.10. The WCC between (I';, ©;) and (I'y, ©3) can be represented as

1((T'1,01), (T2,02))

)= S
V2(T1,61)y/0(T2, 6)
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Cyy ((T1,01), (T2, 05))

> Dp( Zl W {Trl(d}p)(“q) * Irz(zzp)(“q) + Arl(u}p)(uq) * AFZ(J;I,)(uq)
+TF1(7Z’;D) (Uq) * TF?(“L:D) (uq)Krl(J)p) (Uq) * KF2(7Z’17) (Uq)
T, (g,) (Ua) * Tryg,) (Ug) + Ap, g, (Ua) * Ary g, ()

zi: Wy |, 5, ()7 (B, 5 (00)) + (T 5 (00)

q_

(R () + () (20)) + (Aw,,)wq»?} ) }

\/> ZZ: 2::1 Wy {(Trg(ﬁp)(uq)y + (Arg(zﬁp)(uq)y + (Tm(z[)p)(uq))Q
F Ay (10 + (T (10) + (AW)<uq>>2] ) }

Proposition 3.11. Ler (I'y,©,) and (FQ, ©,) be CPFHSSs. Then,

(q) 0 < Ccy, ((T1,01), (T2, 05)) < N
(i) Ccyy (T, 01), (T2, 02)) = CCW((F27@2) (I'1,©1));
(m)If(I‘l,@l) = (FQ,@Q) then CCW((Fhel) (FQ,@Q)) =

Proof. Follow the same steps presented in Proposition 3.7. O

Definition 3.12. The WCC between (I';, ©;) and (I'2©3) can be represented as

Cr((T1,01), (T'2,02))

Céw((rlvél)’(r%(:)Q)) = ~ = . (6)
max {@(Fl,@l),@(Fg,@Q)}
Ciy ((T'1,01), (T2, 02))
3 D, (|5 W (Lt 5, 00)) iy (00 + (i, 5, (00) (i 5, ()
p= 9=
+(Tr, ) (1a) * (Y, 5, (g)) + (Ap, (g, (uq)) * (Ap, (g, (uq))
+(Tr, 5, (a)) * (Try (g, (1a)) + (Ap, (g, (g)) * (Ar2<¢p>(“‘1))D
o {3520 350 0D+ 5 50+ (T, 5, 00
p= q=
ey 3y (00 + (T, 5, () + (i, 5, )] )
> D (Zq 1 Wa [( Yo, 5, () + (A, g, () + (T, g, (1))
(A () (W) + (Try g, () + (Ary g, ( D}
Proposition 3.13. Let (I'y, ;) and (FQ, ©,) be CPFHSSs. Then,
(q) 0 £ Ccy((T'1,01), (I'2,02)) < 5
(ii) Ccyy ((T1, 1), (T2, 62)) = CCW((F27@2) (T'1,©1));
(iii) If (T1,01) = (T2,03), then Cc,, ((T1,01), (T'2,02)) =1
Proof. Follow the same steps presented in Proposition 3.7. O
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4 Aggregation operators for CPFHSS

By using operational laws, the concept of cubic Pythagorean fuzzy hypersoft weighted average operator(CPFHSWAO)
and cubic Pythagorean fuzzy hypersoft weighted geometric operator (CPFHSWGO) are presented in this sec-
tion. Let x denote the collection of cubic Pythagorean fuzzy hypersoft numbers (CPFHSNSs).

4.1 Operational laws for CPFHSS

Definition 4.1. Let Feu = (<[111,T11], T11>7 <[A11,K11],A11>) and Feu = (<[112,

Ti2], T12), ([A1z, A12], A12)) be two CPFHSS and § a positive integer. Then,

(DT, @y, = (((T14+ 1501 Ly, T+ T12=T11 Tro), (T11+T12=T11 12)), (A1 Ayg, A1 Ava], (A11Ad2)));
(i) Teyy, @ Loy = (([X13015, T11 a2, (Y11 T12)), ([Ary + Ao — Ay Ayo, Avy + Avo — AqiAgs], (A +

Ao — A11A12)>)§

(iif) 6Te,, = (([(1 = (1 = 2L3)° (1= (1 = T11)°], (1 = (1= T11)°), ([(A11)°, (A11)°], (A12)?))s

(iv) (Te,,)® = (([(T11)% (T11)°] (C10)°]), ([(1 = (1 = Ayy)?, (1 = (1= A)°], (1= (1 = An)?)).

4.2 Cubic Pythagorean fuzzy hypersoft weighted average operator

Definition 4.2. Let D, and W represent the weight vectors for alternatives and experts, with conditions
Dp, Wy > 0 and Z D, =1, Z W, = 1. LetTe,, = ([T, Tir], Tir)s ([Asr, Air], Aix)) be a CPFHSN,
where ¢ = {1,2,. v} p= {1,2,. .u}. Then, A : k¥ — xk, CPFHSWAQ is represented as A(T"
@;:1 Dy < @qzl Wqle,,

€119 9125 "'7F€nm) =

Theorem 4.3. Let T, = ({[L;1,, Tir), Tir), <[A“,€7A1;€ Air)) be a CPFHSN, where ¢ = {1,2, .0}, p =
{1,2,...u}. Then, the aggregated value of CPFHSWAO is also a CPFHSN, which is given by

TG A W
), ) = LI (=) 7))

(LI (ox)™) " I (I (0o |
(X1 (5))) " FIL(IT () ) ™))

(o (e)™) "1
Example 4.4. Consider the values given in Example 3.2. Assume the weights of the psychiatrists and attributes
as W, = {0.16,0.28,0.34,0.22} and D,, = {0.26,0.32,0.14, 0.28}, respectively. Then,

‘A(Pell ? FelZ’ b F€44)

(B ()™ B (7)™

:j .

(T () ™)™ T (T () ™) I (T () ™) ™))
=({[0.53,0.57],0.52) , ([0.62, 0.67], 0.65)).

4.3 Cubic Pythagorean fuzzy hypersoft weighted geometric operator

Definition 4.5. Let D and W, represent the weight vectors for alternatives and experts with conditions
Dy, Wy > 0 and ZDP =1, ZWq = 1. LetT.,, = (Y, &k, Nir) be a CPFHSN, where ¢ =
{1,2,..v}, p = {1 2 ~ul Then G : k¥ — K, CPFHSWGO is defined as G(I'c,,, Teypy o L, ) =

oz (i (n)")"
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Theorem 4.6. Let T, = (([Ly1,, Tir], Tir), <[Azk,AZ;C Aik)) be a CPFHSN, where ¢ = {1,2,..v}, p =
{1,2,...u}. Then, the aggregated value of CPFHSWGO is also a CPFHSN, which is given by

g(rell 9 Felza ceey Fenm)

(I (I Ge) ™)™ (I () ™) LI (I () ™))

(= (IL (o) ™) (L (o) ™) - (I (- 0e) ™) 7))

= = p=1 \q=1 p= q=

Example 4.7. Consider the values given in Example 3.2. Let the weight of psychiatrists and attributes be same
as in Example 4.4. Then,
g(Fen ’ I—‘612 et F€44)

(I () )D‘"ﬁ(ﬁ( w) ™) 1L (

P q=

(- (I (-aa)™

P q=1

=({[0.40, 0.46], 0.46) , ([0.70, 0.75], 0.69)).

\_/ 'ﬁ
v
/N
1=
/~
-
|
>
=
~—
Q
~—
S|
)
[
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|
=
~
/~
—e
~
I/~
=
|
=
=
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s
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9
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5 MCDM problems based on TOPSIS and CC method

An algorithm and a case study are provided to demonstrate the dependability of CC when integrated with the
CPFHSS TOPSIS method. This novel approach aids in enhancing the selection of the optimal alternative by
considering the minimum and maximum distances from the cubic Pythagorean fuzzy positive ideal solution
(CPFPIS) and cubic Pythagorean fuzzy negative ideal solution (CPFNIS).

5.1 Algorithm to solve MCDM problems with CPFHSS data based on TOPSIS and CC method

Let A = {A17A2, ...,Am} represent set of college students and & = {p1,p2,..., Dy} be a set of psychi-
atrists responsible to evaluate the academic stress-coping skills on college students with weights W, =

(% ~ ~ ~ ~
(W1, Wy, ..., W,),suchthat W, > 0and >~ W, = 1. Let© = {1/)1,1/12, ...,wu} be a set of multi-valued sub-
g=1

u
attributes with weights D), = (D1, D2, ..., Dy,), such that D, > 0 and ) D, = 1. The evaluation of students
p=1
A, (t = 1,2, ..., x) performed by the psychiatrists p,, (¢ = 1,2, ..., v) based on the multi-valued sub-attributes

Uy, (p = 1,2, ..., u) are given in CPFHSS form and represented as !, = (<[Tzk,T2k}, T, <[Alk,K§k], AL,
such that 0 < ((T)?)%, + (A)?)f, < land 0 < (Y)!, + (A)f, <1 Vgq,p.

Step 1. Create the matrix in CPFHSS format as depicted below:

[Af (:)]vxu = [Ayxu = ceccenis .. by
C[CCCC]pIHHNlQ <o Him
D221 422 - - - H2m,

Polnin2 - - - bnm

such that [A"]x,, = sty = (X4 Tarls Th), (A, Aoyl ALY, g = 1,2, vand p = 1,2, ..., u.

Step 2. Generate the weighted decision matrix for every multi-valued sub-attribute,
[AlJoxu
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(LI () ™)™ (I () ™) T (L () ™))

:< [l}k,ik} , T}k>, < [A;k,i;k} : A},k>.

Step 3. Determine the CPFPIS and CPENIS values for the weighted CPFHSS representation:

ae = (e 7] o) ([ 5] )
vXu

_ [I(;mi(;ij) ,r<%'>> 7 < [A<;“>7K<xij>]yA<xu>> 1

]
o) (e

[I(Kij>)7</:ij):| , T(Kq:j>> , < [A(Jij),x(&ij)} , A(;ij)> R

where V;; = arg max, {¢!;} and A;; = arg min, {¢};} .

Step 4. Assess the CC for the alternatives based on CPFPIS and CPFNIS.

X' =Cc(A A1) = _Cr@hAD)
\/P(A) % 1/ (PAT)
wt—Cc(At,A’)— CT(AtaAi)

- A/ P(AL) % 1/ B(A-)

Step 5. Calculate the closeness coefficient for the cubic Pythagorean fuzzy ideal solution:

etzil_wt
2 — xt — ot

Step 6. Compare the ¢’ scores with the norms provided in Table 4 to ascertain the stress-coping level for each
alternative A?, where ¢ ranges from 1 to x. Those exhibiting lower stress-coping skills might necessitate the
assistance of a psychiatrist to manage academic stress effectively.

Table 4: Stress-coping norms.

Scores Level
0-0.30 Low
0.31-0.50 Average

0.51-0.70 Good
0.71-1.00 Excellent

5.2 Application based on TOPSIS and CC method

Let A= {.Al, A% A3, A4} represent a set of college students. Let U = {p1, p2, ps, pa} represent a set of psy-
chiatrists who evaluate the students based on the stress-coping skills with weights W, = (0.16,0.28,0.34, 0.22).
Let ©1, ©5, O3 and ©4 be distinct attribute sets. The corresponding sub-attributes are given by

©; = initial phase = {111 = sensitivity to stress},

O9 = intermediate phase = {19 = capacity for relaxation, ¢9o = self-reliance},

O3 = advanced phase = {1)37 = proactive mindset, 1’3o = adaptability and versatility } and
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©, = final phase = {14; = ability to evaluate situations}. Then O = 01 x Oy x O3 x Oy is the distinct
attribute set given by

O =0 x 0y x O3 x Oy = {th11} X {tho1, a2} X {31,932} x {141}
{(¢11,¢21,¢317¢41),(1/111,%/121,1/)32711141),(¢11,¢22,¢31,¢41)a(1/111,1/12271/’32,1041)}-

:{151,152,1/53,154} with weights D, = (0.26,0.32,0.14,0.28).

This framework aids in identifying students who may benefit from psychiatric support to effectively manage
stress amidst academic pressures.
Step 1. Construct A*, A2, A% and A* matrices in CPFHSS form.

Table 5: Shows values in CPFHSS form for A!.

Al 1 P2

D1 ([0.64, 0.66], 0.49) , ([0.72,0.73],0.79) _ ([0.91, 0.92],0.81) , ([0.32, 0.35], 0.45)
D2 ([0.72,0.75],0.55) , ([0.41,0.45],0.75)  ([0.52,0.56],0.25) , ([0.81,0.82], 0.84)
ps  {[0.41,0.45],0.72), ([0.81,0.84],0.45)  ([0.77,0.79],0.81) , ([0.46, 0.47], 0.55)
ps  ([0.92,0.93],0.56) ,([0.31,0.36],0.61)  ([0.77,0.79],0.71) , ([0.49,0.59],0.61)
Al 3 P4

p1 ([0.36,0.42],0.57) , ([0.61,0.63],0.52)  ([0.48,0.59], 0.69) , ([0-49, 0.52], 0.49)
D2 ([0.73,0.75],0.55) , ([0.61,0.62],0.81)  ([0.81,0.83],0.23) , ([0.52,0.55],0.71)
ps  {[0.42,0.46],0.56) , ([0.72,0.77],0.66)  ([0.34,0.37],0.41) , ([0.64, 0.68], 0.69)
ps  ([0.58,0.62],0.49) ,([0.71,0.73],0.59)  ([0.54,0.57],0.64) , ([0.71,0.75],0.43)

A® Uy U2

p1__ ([0.35,0.41],0.55), ([0.59, 0.64], 0.55) __ ([0.56,0.61],0.71), ([0.47, 0.54], 0.51)
p>  ([0.21,0.25],0.32), ([0.88,0.95],0.88)  ([0.51,0.53],0.24), {[0.79,0.81],0.72)
ps  ([0.43,0.48],0.45) ,([0.71,0.73],0.67)  ([0.35,0.39],0.43) , ([0.62,0.67], 0.68)
ps  ([0.57,0.64],0.65) , ([0.69,0.75],0.62)  ([0.55,0.59],0.66) , ([0.63,0.72], 0.42)
A? 3 Pq

p1 ([0.84,0.91],0.83), ([0.31,0.36],0.46) __ ([0.91, 0.94], 0.52), ([0.31, 0.32], 0.81)
p2  ([0.48,0.55],0.24), ([0.72,0.74],0.88)  ([0.71,0.76],0.58) , {[0.39, 0.46], 0.77)
ps  ([0.72,0.78],0.36) , ([0.48,0.58],0.89)  ([0.21,0.24],0.74) , {[0.79, 0.86], 0.44)
ps  ([0.71,0.75],0.58) , ([0.59,0.66],0.77)  ([0.74,0.75],0.58) , ([0.61,0.64], 0.64)

Table 7: Shows values in CPFHSS form for .43.

A® U1 P2

p1__ ([0.46,0.61],0.71), ([0.46,0.53],0.69) _ ([0.61,0.62],0.47), ([0.76,0.77], 0.81)
p2  ([0.14,0.17],0.22), {[0.72,0.77],0.92)  ([0.16,0.17],0.57), {[0.46, 0.48], 0.69)
ps  ([0.15,0.21],0.43), {[0.66,0.71],0.71)  ([0.21,0.27],0.77), {[0.84,0.88], 0.49)
ps  ([0.52,0.59],0.66) , ([0.68,0.69],0.49)  ([0.34,0.48],0.57) , ([0.74,0.78], 0.69)
A® 1 P2

p1 ([0.39,0.44], 0.54) , ([0.56, 0.64],0.59) _ ([0.51, 0.61], 0.68), ([0.47, 0.55], 0.45)
p2  ([0.24,0.29],0.34), ([0.86,0.95],0.81)  ([0.16,0.19],0.29) , {[0.89,0.96], 0.77)
ps  ([0.46,0.49],0.44) , ([0.64,0.78],0.64)  ([0.38,0.39],0.44) , {[0.62,0.69], 0.72)
ps  ([0.62,0.63],0.64), ([0.65,0.77],0.54)  ([0.57,0.59],0.67), {[0.63,0.79], 0.45)

Table 8: Shows values in CPFHSS form for .4%.

A* U1 P2

p1__ ([0.89,0.92],0.79), ([0.32,0.35], 0.52) __ ([0.84,0.92], 0.88) , ([0.31, 0.34], 0.46)
p2  ([0.51,0.56],0.24), ([0.81,0.82],0.77)  ([0.48,0.56],0.26) , {[0.72,0.82], 0.88)
ps  ([0.75,0.79],0.33), ([0.46,0.47],0.84)  ([0.72,0.77],0.44) , {[0.48,0.62], 0.89)
ps  ([0.45,0.46],0.56) , ([0.49,0.69],0.81)  ([0.81,0.82],0.61) , ([0.54,0.55],0.77)
At Y1 P2

1 ([0.56,0.66],0.77), ([0.47,0.57],0.55) _ ([0.31, 0.44], 0.58), ([0.59, 0.64], 0.59)
p2  ([0.89,0.94],0.25),([0.31,0.32],0.77)  ([0.35,0.39],0.38), ([0.88,0.91],0.81)
ps  ([0.35,0.49],0.44) , ([0.62,0.69],0.69)  ([0.41,0.47],0.48) , {[0.71,0.73],0.61)
ps  ([0.55,0.69],0.67),([0.63,0.71],0.45)  ([0.51,0.65],0.68) , {[0.69,0.75], 0.69)
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Step 2. Evaluate A, A2, A% and A%, the weighted matrices for multi-valued sub-attributes.

Table 9: Shows weighted values in CPFHSS form for Al

Al Y1 )
p1 {[0.0416,0.0439], 0.0276) , ([0.9864, 0.9870], 0.9902) _ ([0.1160, 0.1213], 0.0815) , ([0.9433, 0.9477], 0.9599)
pe  ([0.0885,0.0960],0.0565) , ([0.9372,0.9435],0.9793)  ([0.0636, 0.0709], 0.0254) , ([0.9813, 0.9824], 0.9845)
ps  ([(0.0456,0.0515], 0.1064) , {[0.9815,0.9847],0.9318)  ([0.1478,0.1562],0.1653) , ([0.9190, 0.9211], 0.9370)
pa  ([0.1345,0.1411],0.0459) , ([0.9352,0.9432],0.9721)  ([0.0983, 0.1040], 0.0835) , ([0.9510, 0.9635], 0.9658)
Al 3 Pa
p1 {[0.0099,0.0121],0.0187) , ([0.9890, 0.9897], 0.9855) _ ([0.0289, 0.0392], 0.0511) , ([0.9685,0.9711], 0.9685)
p2  {[0.0500,0.0529],0.0308) , ([0.9808, 0.9814],0.9918)  ([0.1221,0.1297],0.0203) , ([0.9500, 0.9542], 0.9735)
ps  ([0.0256,0.0289],0.0383) , ([0.9845,0.9876],0.9804)  ([0.0388, 0.0430], 0.0490) , ([0.9584, 0.9640], 0.9653)
pa  ([0.0264,0.0294],0.0205) , ([0.9895,0.9904],0.9839)  ([0.0467, 0.0507], 0.0610) , ([0.9791, 0.9824], 0.9493)
Table 10: Shows weighted values in CPFHSS form for A2.
A? Y1 P2
p1 ([0.01780.0217], 0.0327) , ([0.97830.9816], 0.9754) _ ([0.0412, 0.0471], 0.0614) , ([0.9621, 0.9689], 0.9661)
p2  ([0.01700.0207],0.0277) , ([0.99070.9963],0.9907)  ([0.0619, 0.0654], 0.0243) , ([0.9791, 0.9813], 0.9710)
ps  ([0.04850.0562], 0.0515) , ([0.97020.9726],0.9652)  ([0.0458, 0.0524], 0.0593) , ([0.9493, 0.9574], 0.9589)
pa  {[0.04710.0568],0.0583) , ([0.97900.9837],0.9730)  ([0.0547,0.0608], 0.0731) , {[0.9680,0.9771], 0.9408)
-A'Q
p1 {[0.0402,0.0525], 0. 0389> < 0.9741, 0.9774],0.9828)  ([0.1023,0.1184 ,00323) : < 0.9489, 0.9502], 0.9906)
pe  ([0.0253,0.0308],0.0107), ([0.9872,0.9883],0.9950)  ([0.0925,0.1059], 0.0658) , ([0.9288, 0.9409], 0.9797)
ps  ([0.0588,0.0695],0.0210) , ([0.9657,0.9744],0.9945)  ([0.0222,0.0258], 0.1204) , ([0.9778, 0.9857], 0.9248)
pa  ([0.0374,0.0418],0.0264) , ([0.9839,0.9873],0.9920)  ([0.0796, 0.0819], 0.0520) , ([0.9700, 0.9729], 0.9729)
Table 11: Shows weighted values in CPFHSS form for .A3.
A3 1 o
p1__ ([0.0253,0.0384],0.0502) , ([0.9682, 0.9739], 0.9847) _ ([0.0471, 0.0483], 0.0320) , ([0.9860, 0.9867], 0.9893)
p>  ([0.0109,0.0135],0.0179), ([0.9764,0.9812],0.9939)  ([0.0155,0.0166], 0.0728) , ([0.9328, 0.9364], 0.9673)
ps  (0.0143,0.0206], 0.0485) , {[0.9639,0.9702],0.9702)  ([0.0253,0.0337],0.1478) , {[0.9812, 0.9862], 0.9253)
pa  ([0.0411,0.0497],0.0598) , ([0.9782,0.9790],0.9600)  {[0.0288, 0.0450], 0.0577) , {[0.9790, 0.9827], 0.9742)
A? s ha
p1__ ([0.0110,0.0129],0.0172), ([0.9871, 0.9901],0.9883) _ ([0.0315, 0.0413], 0.0498) , ([0.9667, 0.9736], 0.9649)
p>  ([0.0107,0.0133],0.0162) , ([0.9941,0.9980],0.9918)  ([0.0136, 0.0164], 0.0265) , ([0.9909, 0.9968], 0.9797)
ps  ([0.0289,0.0315],0.0272) , ([0.9790, 0.9882],0.9790)  ([0.0445,0.0460],0.0537) , ([0.9555,0.9653], 0.9692)
pa (0.0294,0.0302],0.0310) , {[0.9868, 0.9920],0.9812)  ([0.0507,0.0534],0.0660) . {[0.9719, 0.9856]. 0.9520)
Table 12: Shows weighted values in CPFHSS form for A%
A* 1 P2
p1 {[0.0877,0.0997],0.0629) , ([0.9537, 0.9573],0.9732) _ ([0.0896,0.1213], 0.1029) , ([0.9418, 0.9463], 0.9610)
p2  ([0.0506,0.0580],0.0198) , ([0.9848, 0.9857],0.9812)  ([0.0569,0.0709],0.0266) , ([0.9710,0.9824], 0.9886)
ps  {[0.1153,0.1289],0.0348) . {[0.9337.0.9354],0.9847)  ([0.1203.0.1478],0.0611) , {[0.9232. 0.9493]. 0.9874)
pa_ ([0.0336,0.0346]. 0.0459) , {[0.9600,0.9790].0.9880)  ([0.1103,0.1137],0.0641) , {[0.9575, 0.9588], 0.9818)
At V3 P4
p1_ ([0.0182,0.0239], 0.0324) , ([0.9832, 0.9875], 0.9867) _ {[0.0165, 0.0256], 0.0381) , ([0.9766, 0.9802], 0.9766)
p2  ([0.0829,0.1044],0.0112), ([0.9551,0.9563],0.9898)  ([0.0332,0.0380],0.0368) , ([0.9900, 0.9926], 0.9836)
ps  ([0.0203,0.0315],0.0272) , ([0.9775,0.9825],0.9825)  ([0.0490,0.0587],0.0604) , ([0.9679,0.9705], 0.9540)
pa  ([0.0243,0.0354],0.0336) , ([0.9859, 0.9895],0.9757)  ([0.0430, 0.0626], 0.0678) , ([0.9774, 0.9824], 0.9774)

Step 3. Evaluate the CPFPIS and CPENIS from the matrices, A!, A2 , A3 and A%.

Table 13: Shows the values of CPFPIS (A™).

AT P1 Y2

p1 ([0.0877,0.0007],0.0629) , {[0.9537,0.9573],0.0732) _ ([0.1160,0.1213],0.1029) , ([0.0418, 0.9463], 0.9500)
p2 {[0.0885,0.0960],0.0565) . ([0.9372,0.9435],0.9793)  ([0.0636,0.0709],0.0728) , ({[0.9328, 0.9364]. 0.9673)
ps  {[0.1153,0.1289],0.1064) , {[0.9337,0.9354], 0.9318)  ([0.1478,0.1562], 0.1653) , {[0.9190, 0.9211], 0.9253)
ps  ([0.1345,0.1411].0.0598) , {[0.9352. 0.9432], 0.9600)  {[0.1103,0.1137],0.0835) , {[0.9510, 0.9588], 0.9408)
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At 3 4

p1__ {[0.0402, 0.0525],0.0389) , ([0.9741, 0.9774], 0.9828) _ ([0.1023,0.1184],0.0511) , ([0.9489, 0.9502], 0.9649)
ps  ([0.0829,0.1044],0.0308) , ([0.9551, 0.9563],0.9898)  ([0.1221,0.1297],0.0658) , ([0.9288,0.9409], 0.9735)
ps  ([0.0588,0.0695],0.0383) , ([0.9657, 0.9744],0.9790)  ([0.0490,0.0587],0.1204) , ([0.9555,0.9640], 0.9248)
pa  ([0.0374,0.0418],0.0336) , ([0.9839,0.9873],0.9757)  ([0.0796,0.0819],0.0678) , ([0.9700,0.9729], 0.9493)

Table 14: Shows the values of CPFPIS (A ™).

A~ Y1 P2

p1 {[0.0178,0.0217],0.0629) , ([0.9864, 0.9870], 0.9902) _ ([0.0412,0.0471],0.1029) , ([0.9860, 0.9867], 0.9893)
p2 {[0.0109,0.0135],0.0327} , ([0.9907,0.9963],0.9939)  ([0.0155,0.0166],0.0320) , ([0.9813, 0.9824], 0.9886)
ps  {([0.0143,0.0206],0.0179) , ([0.9815,0.9847],0.9847)  ([0.0253,0.0337],0.0243) , {[0.9812, 0.9862], 0.9874)
pa  {[0.0336,0.0346],0.0348) , ([0.9790, 0.9837],0.9880)  ([0.0288,0.0450],0.0593) , {[0.9790, 0.9827], 0.9818)
A~ 3 Py

p1 {[0.0099,0.0121],0.0389) , ([0.9890, 0.9901], 0.9883) _ ([0.0165, 0.0256], 0.0511) , ([0.9766, 0.9802], 0.9906)
pz  ([0.0107,0.0133],0.0172) , ([0.9941,0.9980],0.9950)  ([0.0136,0.0164],0.0323), ([0.9909, 0.9968], 0.9836)
ps  ([0.0203,0.0289],0.0107) , ([0.9845,0.9882],0.9945)  ([0.0222,0.0258],0.0265) , ([0.9778,0.9857],0.9692)
pa  {[0.0243,0.0294],0.0210) , ([0.9895,0.9920],0.9920)  ([0.0430,0.0507],0.0537) , {[0.9791,0.9856], 0.9774)

Step 4. Evaluate the CC by using the values of CPFPIS and CPENIS.
! =0.9992, x% = 0.9984, x* = 0.9976 and y* = 0.99878.

Al =0.9980, A2 = 0.9991, A* = 0.9995 and \* = 0.99870.

Step 5. Determine the closeness coefficient of cubic Pythagorean fuzzy ideal solution.
el =0.7294, €2 = 0.3538, € = 0.1449 and ¢* = 0.5157.

Step 6. Compare the scores with the norms given in Table 4 and determine the stress-coping levels.
¢! — Excellent, €2 — Average, €2 — Low and ¢* — Good.

= A' — Excellent, A%> — Average, A> — Low and .A* — Good

Hence, A% may require the help of a psychiatrist to manage the stress effectively during academic.

6 Comparative Analysis

The comparative analysis between the proposed cubic Pythagorean fuzzy TOPSIS method and established
DMs serves to highlight the efficacy of CC.

Example 6.1. Considering the values and weights outlined in Section 5.2, we integrate the proposed TOPSIS
method with existing DMs” to rank the alternatives.

v

1
51(61,02) :6—;{‘@“%)(%)) = Ly (02| + |y 5,0 (00))* = (ry 5, ()’

|y W0)? = Ty W) |+ [y 5,0 (00))* = iy 5, 0|

+ ‘(Trl(a@p)(uq)) - (Tr2(1[,p)(“q)) ‘ + '(Arluﬂp)(uq))z - (AFQ(J/I,)(uq))z‘}-

S2(01,02) = % Zlmax{ (Irl(,@p)(“q))Q - (IF2(,¢ZP)(UQ))2‘7 ‘(Arl(,@p)(“q))Q - (Apz(,[,p)(uq)f‘v

T () = (g (00?1 (00)® = (g, (00,

[Ty i (000 = (g5, )% | oy 5 () = (g 02
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2 2
S53(01,02) = % Z { ((71“1(%)) (uq))? = (IF2(1LP)(ULJ))2> + ((Alﬂl(«$17)(1t<z))2 - (Arz(ﬁp)(uq))z)

2
((Ar1(¢p)(uq)) - rz(wp)(uq))

rzwp) (uq)) ) )
((Arl(wp)(uq)) F2(¢p)(uq))2)2}

((Trl (¥p) (uq))

((Trl(wp>(“q)) Ty () (%)) )

v

2 2
S4(©1,02) = % Z:l { ((Irl(q}p)(uq))z - (IFZ(JJP)(uq)f) ((Ar1(¢p)(uq)) — (4 Fz(wp)(“q)) )

2
+((Tm%,wq))z—(YFQ(W(%))Q) (e, 5y ) = By ()

2 2
(0, 0 @) = gy @)+ (g (0 = (g, @a)?) -

Table 15: Comparison study between proposed study and existing DMs.

Tabulation of values computed using existing DMs

851(01,02) = A =0.49, 4% = 0.51 and A% = A = 0.50
852(01,07) = A =0.49, 4% = 0.52 and A% = A* = 0.51
S3(01,0,) = A! =0.47, A% = 0.54 and A% = A* = 0.51
S84(01,05) = A =0.48, 4% = 0.51 and A% = A* = 0.50

0.80

0.70

0.60
mAL
WA2
HA3
mA4

Analysis : As discerned from Table 15, it is evident that conventional DMs struggle to pinpoint the optimal
alternative, unlike CC which effectively identifies the best alternative. Consequently, CC outperforms DMs by
providing precise rankings for each alternative.

7 Comparative Analysis with existing neutrosophic DMs

Table 16: Representation of values in neutrosophic form for A°.

A7 X1 X2 X3 Xa X5 Xe

AT (0.45,0.46,0.564)  (0.45,0.48,0.45)  (0.34,0.38,0.45) _ (0.34,0.45,0.55)  (0.24,0.26,0.56) _ (0.22,0.24, 0.28)
A' (0.66,0.70,0.34)  (0.15,0.17,0.13)  (0.23,0.34,0.64)  (0.20,0.30,0.25)  (0.36,0.45,0.23)  (0.65,0.67,0.68)
Al (0.66,0.67,0.72)  (0.43,0.45,0.41)  (0.22,0.25,0.55)  (0.11,0.18,0.14)  (0.33,0.43,0.53)  (0.21,0.23,0.35)
Al (0.43,0.45,0.25)  (0.35,0.45,0.21)  (0.33,0.43,0.36)  (0.23,0.33,0.45)  (0.44,0.54,0.64)  (0.43,0.44,0.45)

The ranking of the proposed method is as follows:

A? =0.65,> A3 = 0.54, > A* = 0.32, > A' = 0.28.

Analysis: By using Table 17, let’s compare the proposed study with each existing study (Si(%1,%2) to
S7(11,¥2)).

51(1/)17’1/’2)3 Al

= A% = 0.50 and A3
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Table 17: Comparison of existing neutrosophic similarity measures with proposed method.

Unable to rank using existing similarity measures
1,0 = AT = 0.50, A% = 0.49, A% =0.50, A% = 0.49.
1,02 )P*= A = 0.50, A% = 0.50, A% = 0.49, A* = 0.49.
B A = 0.50, A2 = 0.49, A® = 0.50, A* = 0.49.
B A = 0.50, A2 = 0.49, A® = 0.50, A* = 0.50.
S5(11,12)%0= A' = 0.51, A% = 0.48, A% = 0.50, A* = 0.50
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Sa(th1,1h9): A = A3 = 0.50 and A% = A* = 0.49.
S3(th1,109): A = A3 = 0.50 and A? = A* = 0.49.
Si(1,19): Al = A3 = A* = 0.50 and A? = 0.49.
Ss(1h1,109): A3 = A* = 0.50, A' = 0.51 and A? = 0.48.
S6(11,12): AL = A3 = A* = 0.50 and A% = 0.49.
S7(1,19): A% = A3 = A* = 0.50, and A* = 0.46.

From the analysis, it is evident that the existing studies (S1(¥1,12) to S7(11,2) struggle to differentiate
ranks for the data, while the proposed study provides distinct ranks for the same dataset.

8 Conclusions

Based on the comprehensive exploration and analysis conducted in this study, we have successfully defined
CPFHSS and elucidated its key properties. Through the application of aggregation operators and the imple-
mentation of the TOPSIS method, we have effectively assessed the academic stress-coping skills of college
students. In our examination of closeness coefficients, we have utilized CC as a fundamental metric, diverging
from conventional DMs typically employed in similar studies. The culmination of our research is highlighted
in the comparative study between our proposed method and established DMs, showcasing the reliability and
efficacy of our model. In addition, it’s worth noting that our proposed method was also compared with ex-
isting neutrosophic study methodologies. This comparison further solidifies the efficacy and reliability of our
model in evaluating academic stress-coping mechanisms among college students. By demonstrating supe-
rior performance compared to both established DMs and existing neutrosophic approaches, our study offers a
comprehensive and advanced framework for assessing coping strategies in higher education settings. Through
meticulous analysis and rigorous experimentation, we have demonstrated the superiority of our approach in
evaluating academic stress-coping mechanisms among college students. In conclusion, our study not only
contributes to the academic discourse on stress management but also provides a robust framework for assess-
ing coping strategies in higher education settings. The insights gleaned from this research hold significant
implications for educators, counselors, and policymakers seeking to enhance student well-being and academic
performance.
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