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Abstract

Neutrosophic sets can be used to model uncertain data in real-world applications. To increase the use of
complex neutrosophic sets, the space of quaternion numbers is investigated in this work. Analysts in com-
plex contexts can benefit from the knowledge and direction that quaternion neutrosophic sets can offer by
modeling complicated systems and capturing the interactions between various factors. Division algebras are
used in some applications, such as particular formulations of class field theory, but they are generally far less
important than quaternion numbers. Three-dimensional information with imaginary membership, imaginary
indeterminacy, and imaginary non-membership functions is represented using quaternion neutrosophic sets.
Intriguing quaternion numbers give us useful results when we analyze complicated data. Some basic charac-
teristics of the derived concepts are examined. Novel quaternion-based operations and the analysis of order
relations and logic operations are also explored based on neutrosophic set theory. For modeling uncertainty in
quaternion-based systems, quaternion neutrosophic sets are helpful. Other fuzzy sets are unable to adequately
capture the sophisticated fuzzy information that they can represent, such as uncertainty in both size and direc-
tion. The capacity to define fuzzy distance and similarity metrics is one of its intriguing qualities. We also
present two quaternion distance measures and evaluate their properties. We use quaternion representations
and measurements in a neutrosophic framework for decision-making models, and the results are excellent.
Additionally, it shows readers how to construct the connections between traits and alternatives that are used in
decision-making issues. An example is provided at the end to help illustrate the suggested strategy and provide
additional context. Finally, we employ a different distance metric that is illustrated in the reliability section
to validate the developed methodologies. It is possible to address the findings of studies on the application of
quaternion neutrosophic sets for addressing various types of uncertainty in optimization problems related to
the design and management of complex systems.
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1 Introduction

Making a decision is like working through a puzzle to get an answer that seems right, or at least good enough.
Therefore, it’s a procedure that can be more or less rational or irrational, depending on whether the facts and
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ideas upon which it is founded are made known or kept hidden. When making a difficult choice, people typi-
cally rely on their tacit knowledge to help fill in the blanks. In most cases, when making a choice, both tacit and
explicit knowledge are considered. A substantial component of decision-making involves analyzing a small
set of possibilities that are described in terms of criteria for assessment. The next step could be to rank these
choices according to how desirable they appear to the decision-maker(s) whenever all the relevant considera-
tions are taken into account. Finding the best option or assessing the relative or overall significance of every
choice (for instance, if choices represent projects vying for money) would be a challenge when all the factors
have been taken into consideration at once.1 Solving such problems is the aim of multiple-criteria decision
analysis (MCDA). Because several MCDA methods can produce drastically different results when applied to
the same set of data, this topic of decision-making has attracted the interest of many scholars and practitioners
despite being quite ancient. As a result, a dilemma regarding decision-making is produced. All jobs based
on science demand rational decision-making, in which professionals use their knowledge of a given topic to
make informed decisions. For instance, selecting the appropriate course of action and making a diagnosis
are usually required while making medical decisions. Naturalistic decision-making research, however, reveals
that in situations with greater time restraints, stakes, or uncertainties, professionals may choose intuitive rather
than organized approaches. Rather than weighing their options, they can choose a course to pursue based on a
recognition-driven decision that fits their experience.2

The decision-makers circumstances may have an impact on their choices. For instance, the environment’s
complexity is a factor that influences cognitive function. An intricate environment has a wide range of poten-
tial states that may evolve throughout time. A simple space contained fewer of these items; in one experiment,
the number of small pieces of equipment and items in the room functioned as a substitute for the area’s com-
plexity. A setting with a higher degree of complexity affects cognitive function significantly, making it easier
to assess the situation and make better decisions.

The majority of systems in use today are categorized as complex systems with many variables, elements,
and large dimensions. It is commonly acknowledged that traditional approaches to modeling and regulating
contemporary systems have made significant contributions to research and the resolution of numerous control
issues.3, 4 They have only been able to have a small impact on the problems that complex dynamic systems are
causing, though. For complex systems, new approaches have been put forth that draw on existing knowledge
and human experience, are capable of learning, and include cutting-edge features like the ability to recognize
and identify failures. For modeling and managing complex systems, fuzzy quaternion maps (FQM) are sug-
gested in this work. The use of FQM may help in the pursuit of more intelligent control strategies and the
creation of autonomous systems. To depict the model and the behavior of the system, an FQM creates a causal
diagram. Imprecise rules govern how the concepts in an FQM interact and how complicated system operations
are replicated.5

Fuzzy quaternion maps are a type of symbolic representation that is used to describe and model complicated
systems. They are made up of ideas that depict various facets of the system’s behavior, and these ideas interact
with one another to demonstrate the dynamics of the system. Because of the way by which it is developed,
i.e., utilizing human specialists who are familiar with the operation of the system and its behavior in various
conditions, the human experience and knowledge of the operation of the system are used to produce FQMs.
An FQM uses the knowledge that has been acquired about the complex system to simply and symbolically
characterize the system’s behavior using a graph that depicts cause and effect along concepts.6

2 Literature Review

One of the most beneficial resources of what has become known as contemporary mathematics, Cantor’s
theory regarding sets is founded on the idea that substances belong to sets and has allowed us to examine
modeling and develop in other domains.7 In addition, unit membership within a set is a bivalent switch
concept that can only take on values between 0 (no membership) and 1 (membership), which eliminates other
set possibilities that have been investigated in the fields of logic models. Zadeh advocates the use of fuzzy
sets (FSs)8 by assuming that an element’s membership in a set may be represented by a number between 0
and 1, with 0 representing non-membership, 1 denoting membership, and the digits between 0 and 1 denoting
varying degrees of membership. Both explaining phenomena governed by ambiguous parameters and creating
non-bivalent logic models have proven to be extremely effective with these sets. The concept of degree of
membership, µ : ∆ → [0, 1], is critical to this theory. In addition, Zadeh introduces the idea of interval-valued
fuzzy sets, in which an element’s level of membership in a set is established by a closed subinterval of [0,
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1] rather than by an element of [0, 1]. If ∆ is a non-empty set, also referred to as a referential set, then an
expression is given that is an interval-valued fuzzy set P on ∆.

P = {(⋓,MP (⋓))|⋓ ∈ ∆}

where MP : ⋓ → D[0, 1], such that
x → MP (⋓) = [MPL(⋓),MPU (⋓)], D[0,1] being the set of all closed subintervals of [0,1], MPL(⋓) and
MPU (⋓) are the lower extreme and upper extreme respectively of the interval MP (⋓). The set of all interval
valued fuzzy sets on ∆ shall be referred to as IVFSs (∆). These sets have received a lot of attention and
are commonly utilized. Gorzalczany’s work on approximate reasoning,10 Sanchez’s,11 Sambuc’s,12 Roy and
Biswas’ work on medical diagnostics,13 Turksen’s work on multivalent logic,14 Ponsard’s, and the Chinese
school of Julong’s are all worth mentioning. It’s worth noting that Julong refers to these sets as grey sets.
Atanassov proposed the intuitionistic fuzzy set (IFS), which is a broadening of Zadeh’s fuzzy sets. Each IFS
element is represented as an ordered pair (µ, ν) that meets the criterion µ + ν ≤ 1. IFS is most commonly
used in practical MCDA issues, and academic research on the subject has progressed significantly.
The neutrosophic set (NS), an idea in philosophy and mathematical instrument for understanding the genesis,
nature, and scope of neutralities, was initially put forth by Smarandache.15 It examines neutralities’ develop-
ment, characteristics, and uses as well as how they interact with other ideational spectrum. However, in some
real-world situations, an option satisfying a decision maker feature may have membership and nonmember-
ship degrees that add up to more than 1, but their square sum is less than or equal to 1. To support this theory,
Pythagorean fuzzy sets have been characterized.16 It will be difficult to apply NS in actual scientific and en-
gineering contexts, despite the fact that it philosophically generalised the ideas of FS, IFS, and all existing
structures. This concept is essential in a variety of circumstances, such as details fusion, which combines data
from many sensors. Neutosophic sets have been heavily utilized in engineering and other sectors in recent
years for decision-making. Wang et al.17 suggested a single-valued neutrosophic set (SV-NS) that can handle
challenges with erroneous, unclear, and conflicting data. Its extensions have been specified by numerous other
academics; for instance, see.18 Contrarily, an SV-NS is a kind of NS that allows us to depict uncertainty,
imprecision, incompleteness, and unpredictable behavior in real life. It would be more suitable to employ con-
tradictory data as well as an information matrix while making decisions. On the other hand, SV-NSs can be
employed in scientific and technological applications since the SV-NS theory can be helpful in modeling con-
fusing, imprecise, and inconsistent data. Due to its simplicity in capturing the ambiguous nature of subjective
assessments, the SV-NS is well suited for gathering vague, ambiguous, and inconsistent data in MCDA.20–22

A DM gives his endorsement for membership of a substitute is
√
3
2 and his sympathy opposed membership is

1
2 . Yager23 provided an example to illustrate this circumstances: a DM gives his endorsement for membership
of a substitute is

√
3
2 and his support against membership is 1

2 . They are not accessible for IFS since the total
of two values is more than 1, but they are accessible for PFS because (

√
3
2 )2 + (12 )

2 ≤ 1. Clearly, PFSs is
better in modeling the ambiguity in real-world problems. After carefully examining all of the possibilities, a
method called ”MCDA” is used to resolve real-world issues. The MCDA techniques have gained acceptance
and are now widely employed in a variety of fields, including health, architecture, economics, and a number
of other scientific and professional ones. Due to the complexity and ambiguity of the gathered data, which
made it challenging for decision-makers to arrive at the best conclusions, the MCDA technique has recently
advanced. The standard MCDA procedures produced results that were so confused and surprising that they
were unusable.28

A more recent field of fuzzy logic study is complex fuzzy sets (CFSs). According to Ramot et al.,24, 25 CFSs
are subsets of some universal set with a membership function whose codomain is the unit disc of the complex
plane. A CFS is correspondingly a set of ordered pairs (x, µ(x)) in which x ∈ X is an element of some
universal set and µ(x) is membership in the CFSs, µ(x) ∈ {c ∈ C||c| ≤ 1, for C the complex plane. CFSs
and isomorphic complex fuzzy logic have been demonstrated to produce accurate and parsimonious models
for time series forecasting,26 data mining,27 and image processing. By asserting that, at least in some circum-
stances, a second dimension is necessary to express membership, complex fuzzy set theory extends the original
idea of fuzzy membership. The core idea of fuzzyness, however, is unaffected by this additional dimension.
The membership of a complicated fuzzy set is “just as fuzzy” as that of a regular fuzzy set. Unfortunately,
it is difficult to understand the idea of a complex-valued membership, which presents a significant obstacle
to achieving its full potential. As a result, a sizeable chunk of this book is devoted to discussing the intuitive
understanding of membership grades with complex values. To help people grasp the benefits and potential
of complex-valued membership functions, a number of examples are also given. It should be mentioned that
combining complex numbers with fuzzy sets has been the subject of extensive research. But the characteristics
of using complex numbers with fuzzy sets that are presented in the literature frequently diverge greatly from
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those that are mentioned. We use Quaternion numbers with neutrosophic information in this study. Quaternion
numbers are the generalization of complex numbers and non-commutative four-dimensional algebra.
Quaternion numbers and their applications to rotations were first brought to light in print by Olinde Rodrigues
et al in 1840, but an Irish mathematician Sir William Rowan Hamilton29 discovered it independently in 1843
and applied it to mechanics in 3D space. A quaternion can be used to inscribe any rotation in a 3D coordinate
system. Technically, a quaternion is the combination of three complex elements and one real element. Also,
it can be used for much more than rotations. For rotations, quaternion are superior to using Euler angles, and
the gamble lock problem is handled. There is extensive use of quaternion in computer animation; in which
quaternion are used to represent transformations of orientations of graphical objects. They provide an inven-
tive solution to problems that calamity early animated programs, convenient interpolation, gimbal lock, and
instability.

2.1 Motivation

Real and imaginary numbers are added together to form complex numbers. charting a complex number on the
plane of complex numbers is analogous to charting a real number on a number line: the x and y coordinates
stand in for the real and imaginary halves of the number, respectively. As a result, it is simple to use complex
numbers for expressing two-dimensional quantities (such as a location on a map). There is a strong connection
between points on a sphere’s surface and complex numbers. Although complex numbers have a long history
in mathematics, they also have numerous uses in engineering and physics that are too numerous to go into
here. Instead, let’s focus on one specific example: describing rotational in two dimensions. As far as I can
tell from my historical readings, when Hamilton began attempting to generalised complex numbers to higher
dimensions, he wasn’t particularly considering applications to science. Instead, he was simply interested in
seeing if he could find a system of numbers with two fictitious units, i,j and k, that might represent points
in three dimensions. But he was unable to locate one that was reliable. On that walk on October 16, 1843,
he came to the realization that he could accomplish it using three separate fictitious numbers: i, j, and k.
Using this concept, we apply the neutrosophic information to construct the relationship between neutrosophic
numbers with quaternion numbers to represent the three dimension complex information. Use of quaternion
neutrosophic sets (QNSs) in decision-making has a number of justifications, including:

• The capacity of QNSs to deal with data ambiguity is one of their main advantages. Fuzzy quaternion sets
can capture more complicated and subtle interactions between many aspects and produce more accurate
answers by expressing data in a three-dimensional space.

• For decision-making processes including several criteria or considerations, QNSs can be especially help-
ful. These sets can produce more thorough findings that take into consideration all pertinent elements
by merging many criteria in a single model.

• In complicated network decision-making tasks like those in industrial applications or financial modeling,
QNSs are also well suited. Such type of information can produce predictions and insights that are more
precise because they are able to capture the intricate interactions between various variables.

• QNSs can be applied to long-term strategic planning, including organizational development and market
analysis. These can assist firms in making wise judgments regarding the direction of their future by
producing precise projections based on a variety of parameters.

• QNSs can be utilized for traffic management, including pattern prediction, flow optimization, and con-
gestion reduction. Such information can shorten travel times and increase safety by taking into consid-
eration a variety of factors, including weather, accidents, and construction.

The following are some of the study endowments that are consequential:

• Quaternion neutrosophic set is a useful novel approach of fuzzy set when identifying the imaginary
membership of an element to a set is challenging due to disagreement between a few alternative values.
order relations, set-theoretic operations, and some additional operations that take advantage of QNSs are
given.
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• Algebraic quaternion distance measures are proposed.

• There are numerous illustrated examples available to explain various novel concepts connected to the
newly constructed AOs for information fusion. In comparison to previous techniques, the proposed
operators provide more generalised, reliable, and correct information then the complex sets.

• With the assistance of specified relations and distance measures, a new MCDA technique for modeling
uncertainty in real-life settings was devised. Quaternion neutrosophic numbers (QNNs) are being uti-
lized to solve a range of MCDA problems. To demonstrate the applicability of the suggested approach,
an illustrative example for medical diagnosis based on the proposed representations based is offered to
investigate.

Why this method is powerful then the previous?
We cannot sketch Hamilton’s quaternion on a piece of paper since it appears that it requires four coordinates
(one actual portion and three fictitious parts) to plot. But we can draw that if we have imaginary sections of
the quaternion (leaving out the real bit) and the three spatial coordinates (x, y, and z). In fact, unit vectors
mathematical constructions that represent the most basic perpendicular directions in three dimensional space
have been designated with the (i, j, k) notation, as those of you who have taken beginning physics or specific
math subjects may be aware. Quaternion numbers are far more effective because they allow you to indicate
rotations in both directions (using only the imaginary components) or the entire quaternion. The study of the
rotation and the algebraic structure of the complex numbers is much more difficult. In the context of complex
neutrosophic sets, the study is very complicated. Quaternion numbers allow us to easily solve complex prob-
lems using neutrosophic information. As a result, the model we introduced to solve complex neutrosophic
problems is extremely useful.
The following sections make up the remaining portion of the article. In Section 3, background ideas are de-
fined. In Section 4, a new neutrosophic set representation based on quaternion numbers is presented. Section 5
investigates neutrosophic-based quaternion distance measurements. Section 6 presents tests using benchmark
medical diagnosis data-sets and introduces a novel decision-making model based on the proposed quaternion
distance metrics also demonstrates the reliability of our suggested approach in this section. Advantages and
limitations of the proposed model is described in section 7. Section 8 concludes with recommendations for
additional research.

3 Preliminary

Basic definitions and associated concepts utilized in the work are presented in this part.

Definition 3.1. (See8) Assume that, D is a fuzzy set (FS) over Z is mathematically described as;

D = {(⋓, µD(⋓)) : ⋓ ∈ Z}, (1)

Here µD(⋓) ∈ [0, 1] is membership degree of ⋓ in Z.

Definition 3.2. (See8) Assume D is an Intuitionistic fuzzy set (IFS) over Z is mathematically described as;

D = {(⋓, µD(⋓), νD(⋓)) : ⋓ ∈ Z}, (2)

Here (µD(⋓), νD(⋓)) → [0, 1] are membership degree (MD) and non membership degree (NMD) of ⋓ in Z.
Satisfy that 0 ≤ µD(⋓) + νD(⋓) ≤ 1

Definition 3.3. (See24, 25) Assume that, D is a Complex fuzzy set (CFS) over Z is mathematically described
as;

D = {(⋓, µD(⋓)) : ⋓ ∈ Z}, (3)

Here µD(⋓) is complex valued grade of MD of ⋓ in Z. By definition, the value µD(⋓) may receive all lie
with in the unit circle in the complex plane, and are thus of the form rD(⋓).ejωD(⋓) where j =

√
−1, rD(⋓)

and PD(⋓) are both real valued and rD(⋓) ∈ [0, 1]
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Definition 3.4. (See30) Assume that, D is a Complex intuitionistic fuzzy set (CIFS) over Z is distinguished
by a MD ζD(⋓) and NMD ηD(⋓), respectively, that assign an element ⋓ ∈ Z a complex-valued grade to both
MD and NMD in Z. The values of ζD(⋓) and ηD(⋓) all lie with in the unit circle in the complex plane and are
of the form ζD(⋓) = PD(⋓)ejωD(⋓) and ηD(⋓) = rD(⋓)ejµD(⋓), where ζD(⋓), ηD(⋓), PD(⋓), and rD(⋓)
all are real values and PD(⋓) and rD(⋓) ∈ [0, 1] with j =

√
−1 is denoted as

D = {(⋓, ζD(⋓), ηD(⋓) : ⋓ ∈ Z}, (4)

Similarly, the pure complex NMD was added to the concept of complex fuzzy class to create the concept of
complex intuitionistic fuzzy class.31

Definition 3.5. (See33) Assume that D is a Pythagorean fuzzy set (PFS) over Z is mathematically described
as;

D = {(⋓, µD(⋓), νD(⋓)) : ⋓ ∈ Z}, (5)

Here µD(⋓) → [0, 1] and νD(⋓) → [0, 1], is MD and NMD of ⋓ in Z. Satisfy that 0 ≤ (µD(⋓))2 +
(νD(⋓))2 ≤ 1, Moreover the hesitancy degree is defined as ηD(⋓) =

√
1− ((µD(⋓))2 + (νD(⋓))2).

Definition 3.6. (See30) A Complex Pythagorean fuzzy set (CPFS) D over Z is distinguished by a MD ζD(⋓)
and NMD ηD(⋓), respectively, that assign an element ⋓ ∈ Z a complex-valued grade to both MD and NMD
in Z. The values of ζD(⋓) and ηD(⋓) all lie with in the unit circle in the complex plane and are of the form
ζD(⋓) = PD(x)ejωD(⋓) and ηD(⋓) = rD(⋓)ejµD(⋓), where ζD(⋓), ηD(⋓), PD(⋓), and rD(⋓) all are real
values and PD(⋓) and rD(⋓) ∈ [0, 1] with j =

√
−1 is denoted as

D = {(⋓, ζD(⋓), ηD(⋓) : ⋓ ∈ Z}, (6)

Here ζD(⋓) → [0, 1] and ηD(⋓) → [0, 1], is MD and NMD of ⋓ in Z. Satisfy that 0 ≤ (ζD(⋓))2+(ηD(⋓))2 ≤
1, Moreover the hesitancy degree is defined as ηD(⋓) =

√
1− (ζD(⋓))2 + (ηD(⋓))2).

Definition 3.7. A quaternion q is a four dimensional complex number also called a hyper complex number,
introduced by Hamilton34 in 1843. Let a, b, c, d are real numbers and i, j, k are imaginary units then a quater-
nion is expressed as q = a + bi + cj + dk. The imaginary units i, j, k are mutually orthogonal unit vectors.
These imaginary units have the following properties:

• i2 = j2 = k2 = ijk = −1

• ij = −ji = k, jk = −kj = i, ki = −ik = j.

Definition 3.8. Let Z be space and ⋓ ∈ Z. A neutrosophic set15 D in Z is categorized as MD TD, indeter-
minacy membership (IM) ID and NMD FD. TD, ID and FD are there any genuine standard or non-standard
subsets of ]0−1, 1+[. That is,

TD : Z →]0−1, 1+[, ID : Z →]0−1, 1+[, FD : Z →]0−1, 1+[.

The overall value is unrestricted, TD, ID and FD, so 0− ≤ sup TD + sup ID + sup FD ≤ 3+.

Definition 3.9. Assume that Z represents finite universe of discourse (UOD). The D of an SV-NFSs in Z is
specified in.3

D = {TD, ID, FD| ∈ Z}
TD : Z → [0, 1], ID : Z → [0, 1], FD : Z → [0, 1].

such that,
0 ≤ TD + ID + FD ≤ 3.

Definition 3.10. Assume that M represents finite universe of discourse (UOD). The N of an SVNFSs in M
is specified in.35

N = {ϱ, αA(ϱ), βA(ϱ), γA(ϱ)|ϱ ∈ M}
αA : M → [0, 1], βA : M → [0, 1], γA : M → [0, 1].

such that,
0 ≤ αA(ϱ) + βA(ϱ) + γA(ϱ) ≤ 3.
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4 Development of Neutrosophic Information in term of Quaternion Numbers

In this section, we generalize the neutrosophic sets by the help of Quaternion numbers. This model improves on
the previous model31 by representing NS with pure quaternion numbers (hyper complex) rather than complex
numbers. The suggested model is more powerful than the two or three parameter description of IFSs based on
complex numbers provided in.30 In all below mentioned state we discussed about neutrosophic sets with the
help of quaternion numbers. We denoted them as quaternion neutrosophic sets (QNSs). We consider ℜ as the
set of real numbers and Q as the set of quaternion numbers.

Definition 4.1. A fuzzy quaternion number30 is given by Q́ : B → [0, 1] such that

Q́(ω + αi+ βj + γk) = min{W (ω), X(α), Y (β), Z(γ)}

for some (ω, α, β, γ) ∈ BQ and W,X, Y , Z ∈ ℜF , here ℜF fuzzy quaternion numbers.

Definition 4.2. A fuzzy pure quaternion number31 is given by Q́ : B → [0, 1] such that

Q́(αi+ βj + γk) = min{X(α), Y (β), Z(γ)}

for some (ω, α, β, γ) ∈ BQ and X,Y , Z ∈ ℜF , here ℜF fuzzy pure quaternion numbers.

Definition 4.3. A quaternion neutrosophic set (QNS) is given by ŃQ : N → [0, 1] such that

ŃQ(αi+ βj + γk) = min{X(α), Y (β), Z(γ)}

for some (α, β, γ) ∈ NQ and X,Y , Z ∈ ℜNQ
, here ℜNQ

is quaternion neutrosophic set. For the better
understanding X is called membership function, Y is called indeterminacy function, and Z is called non
membership function. Here the function satisfied the following condition for Quaternion Neutrosophic set
(QNS) as

0 ≤ α+ β + γ ≤ 3

and
(α, β, γ) → [0, 1]

Figure 1: Graphical representation of the complex degrees for Quaternion 3-D

Remarks: When studying scenarios involving rotations in N3, quaternions are particularly effective. A triplet,
or pure quaternion, is a more succinct illustration than a rotation matrix. The fact that the rotation axis and
angle can be easily determined makes its geometric significance more clear. We will be able to compose
rotations with ease using the quaternion algebra that will be introduced. This is so because just sixteen multi-
plications and twelve additions are required for quaternion composition. As described a quaternion operation
is ŃQ(αi + βj + γk) here i,j & k satisfying condition i2 = j2 = k2 = ijk = −1&ij = −ji = k, jk =
−kj = i, ki = −ik = j. Figure 1 provides an accessible illustration of the unit quaterions’ byproducts.

Theorem 4.4. A quaternion neutrosophic number is normal if and only if Z exists for every ζ ∈ ΞQ such that
ζ(Z) = 1.
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Proof. Suppose ζ ∈ ΞQ, then
ζ = (α, β, γ), α, β, γ ∈ NQ.

Given that any ambiguous real number is normal, there must exist ♭, ℓ, ∂ ∈ N such that;

α(♭) = β(ℓ) = γ(∂) = 1.

Let
Z = ♭i+ ℓj + ∂k

Hence, we deduce that ζ(Z) = 1. Suppose δ ∈ (0, 1] and α ∈ NQ. Then the set

α[δ] = {κ ∈ N : α(κ) ≥ δ}

is the δ − cut of α. The set of the δ − cut will apply to fuzzy quaternion numbers as

ζ[δ] = {Z ∈ Ξ : ζ(Z) ≥ δ}.

Theorem 4.5. For each ζ ∈ ΞQ and δ ∈ (0, 1], ζ[δ] = α[δ] × β[δ] × γ[δ], such that ζ[δ] is a hiper-cube in
N3.

Proof. suppose that
ζ = (α, β, γ)

and
Z = ♭i+ ℓj + ∂k ∈ ζ[δ],

then
ζ(Z) = min{α(♭), β(ℓ), γ(∂)} ≥ δ

and
{α(♭), β(ℓ), γ(∂)} ≥ δ,

such that
♭ ∈ α[δ], ℓ ∈ β[δ], ∂ ∈ γ[δ].

Hence,
Z ∈ {α[δ]× β[δ]× γ[δ]} .

Instead, if
Z ∈ {α[δ]× β[δ]× γ[δ]} ,

Then
Z = ♭i+ ℓj + ∂k, ♭ ∈ α[δ], ℓ ∈ β[δ], ∂ ∈ γ[δ]

It is simple to draw the conclusion that Z ∈ ζ[δ], if we proceed along the opposite method of the first portion.

4.1 Algebraic Operations for Quaternion Neutrosophic Sets

In this section, we discuss the algebraic operations for Quaternion Neutrosophic sets (QNSs). We devolved
some algebraic operations on the newly generalized quaternion neutrosophic information such as complement,
Conjugate, Magnitude, Inverse, Union, Intersection, and product.

Definition 4.6. Let D = {(⋓, TD(⋓)i, ID(⋓)j, FD(⋓))k : ⋓ ∈ ∆} is a set of Quaternion Neutrosophic
numbers (QNNs). The complement of D is as

DC = {(⋓, FD(⋓)k, (1− ID(⋓))j, TD(⋓))i : ⋓ ∈ ∆}

Proposition 4.7. Assume that D be a QNS on P . Then, (DC)C = D.
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Proof. Using definition 4.6, We will easily demonstrate it.

Example 4.8. Let Dq = (0.5i, 0.3j, 0.4k) is a QNs then the Complement of QNNs Dq is as

DC = (0.4k, 0.7j, 0.5i)

Remarks: By definition 4.6, we have D = {(⋓, TD(⋓)i, ID(⋓)j, FD(⋓))k : ⋓ ∈ ∆}, where TD(⋓)i, ID(⋓)j, FD(⋓)
are imaginary MD, imaginary IM and imaginary NMD of the quaternion neutrosophic function respectively.

Definition 4.9. Let DQ = αi, βj, γk be a set of QNNs, then its conjugate, denoted by DQ, is defined as
D = −αi,−βj,−γk. Geometrically, it represents the reflection of quaternion number around the imaginary
directions see in Figure 1.

Example 4.10. Let Dq = 0.5i, 0.3j, 0.4k is a QNs then the Conjugate of QNs Dq is as

Dq = 0.5i,−0.7j,−0.4k

Definition 4.11. Let D = αi, βj, γk be a set of QNNs, where ω = 0 for pure Quaternion function, then its
magnitude is described as

|| D ||=
√

α2 + β2 + γ2

It is also called length or norm of a Quaternion neutrosophic numbers. Alternatively this is described as

|| D ||=
√
DD

Example 4.12. Let Dq = 0.5i, 0.3j, 0.4k is a QNs then the magnitude of QNNs DQ is as

|| DQ ||=
√

0.52 + 0.32 + 0.42

Definition 4.13. Let DQ and DQ are set of QNNs and its conjugate respectively, then the inverse of a conjugate
is defined as

DQ
−1 =

DQ

| DQ |
Example 4.14. Let DQ = 0.5i, 0.3j, 0.4k is a set of QNNs then the Inverse of QNNs DQ is as

DQ
−1 =

0.5i, 0.7j, 0.4k√
0.52 + 0.32 + 0.42

Definition 4.15. A QNN is said to be unit QNN if its magnitude is one. i.e.,

|| DQ ||= 1

, here DQ = {⋓, αi, βj, γk}

Definition 4.16. Union of Quaternion neutrosophic sets. Let Dq1 and Dq2 be two Quaternion neutrosophic
sets. The union is defined as,

TDq1(⋓)∪Dq2(⋓) = [pq1(⋓) ∨ pq1(⋓)]i

IDq1(⋓)∪Dq2(⋓) = [qq1(⋓) ∧ qq1(⋓)]j

FDq1(⋓)∪Dq2(⋓) = [rq1(⋓) ∧ rq1(⋓)]k

Here ∨ and ∧ denote the max and min operators respectively.

Proposition 4.17. Assume that D and E be the two QNSs on P . Then, (D ∪ E)C = DC ∪ EC .

Proof. Using definition 4.6 and definition 4.16, We will easily demonstrate it.

Definition 4.18. The intersection of Quaternion neutrosophic sets. Let Dq1 and Dq2 be two Quaternion
neutrosophic sets. The intersection is defined as,

TDq1(⋓)∩Dq2(⋓) = [pq1(⋓) ∧ pq1(⋓)]i

IDq1(⋓)∩Dq2(⋓) = [qq1(⋓) ∨ qq1(⋓)]j

FDq1(⋓)∩Dq2(⋓) = [rq1(⋓) ∨ rq1(⋓)]k

Here ∨ and ∧ denote the max and min operators respectively.
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Proposition 4.19. Let NQ1
and NQ2

are two QNS in ∆ then,

(NQ1 ∪NQ2) ∩NQ1 = NQ1

(NQ1
∩NQ2

) ∪NQ1
= NQ1

Proof: Suppose NQ1
and NQ2

are two QNS in ∆ then α(⋓), β(⋓), and γ(⋓) are quaternion MD, IM and
NMD respectively, then

α((NQ1
∪NQ2

) ∩NQ1
= NQ1

)(⋓) = min(max(NQ1
, NQ2

), NQ1
) = α(⋓)

Similarly we can find β(⋓) and γ(⋓) respectively.

Definition 4.20. Suppose NQ1 and NQ2 are two QNS in ∆ and TNQ1
(⋓) = pNQ1

(⋓)i, INQ1
(⋓) = qNQ1

(⋓)j,
FNQ1

(⋓) = rNQ1
(⋓)k and TNQ2

(⋓) = pNQ2
(⋓)i, INQ2

(⋓) = qNQ2
(⋓)j, FNQ2

(⋓) = rNQ2
(⋓)k be their

quaternion MD, IM and NMD respectively, then the quaternion neutrosophic product is denoted as NQ1
◦NQ2

and specified by the function as

TNQ1
◦ NQ2

(⋓) = pNQ1
◦ NQ2

(⋓) = p(⋓)i

INQ1
◦ NQ2

(⋓) = qNQ1
◦ NQ2

(⋓) = q(⋓)j

FNQ1
◦ NQ2

(⋓) = pNQ1
◦ NQ2

(⋓) = r(⋓)k

Example 4.21. Suppose ∆ = {⋓1,⋓2} and NQ1 = { 0.3i,0.6j,0.9k
⋓1

, 0.2i,0.7j,0.3k
⋓2

} and
NQ2 = { 0.7i,0.3j,0.9k

⋓1
, 0.8i,0.7j,0.6k

⋓2
} then NQ1 ◦ NQ2(⋓) = ( 0.21i,0.18j,0.81k⋓1

, 0.16i,0.49j,0.18k
⋓2

)

Definition 4.22. Suppose Nn be the n quaternion neutrosophic sets on X and {n = 1, 2, 3, ...N} TNn(⋓) =
pNn(⋓)i, INn(⋓) = qNn(⋓)j, FNn(⋓) = pNn(⋓)k be their quaternion MD, IM and NMD respectively, the
cartesian product of Nn is mathematically written as N1 ×N2 ×N3×, ..., Nn specified as

TN1×N2×N3×,...,Nn(⋓)i = pN1×N2×N3×,...,Nn(⋓)i

= min(pN1
(⋓), pN2

(⋓), pN3
(⋓), ..., pNn

(⋓))i

IN1×N2×N3×,...,Nn
(⋓)j = qN1×N2×N3×,...,Nn

(⋓)j

= max(qN1
(⋓), qN2

(⋓), qN3
(⋓), ..., qNn

(⋓))j

FN1×N2×N3×,...,Nn
(⋓)k = qN1×N2×N3×,...,Nn

(⋓)k

= max(rN1
(⋓), rN2

(⋓), rN3
(⋓), ..., rNn

(⋓))k

5 Distance Measure of Quaternion Neutrosophic Sets

We introduce numerous quaternion neutrosophic set distance metrics in this section. Initially, we provide the
following definition of distance between quaternion neutrosophic sets:

Definition 5.1. A distance of quaternion neutrosophic sets is a function d : QNS × QNS −→ QR ∪ {0}
which satisfied the following conditions for any NQ1 , NQ2 and NQ3 in QNS.

d(NQ1
, NQ2

≥ 0) and d(NQ1
, NQ2

= 0) iff NQ1
= NQ2

.

d((NQ1
, NQ2

) = d((NQ2
, NQ1

).

d((NQ1
, NQ2

) + d((NQ1
, NQ3

) ≥ d((NQ2
, NQ3

).

In this part, we suggest a novel distance metric for QNS based on the Jensen-Shannon divergence. Addition-
ally, we deduce and establish the merits and traits of suggested distance metrics.
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Definition 5.2. NQ1
and NQ2

be two QNSs are given in ∆ then,

NQ1 =
{
(⋓, αNQ1

(⋓)i, βNQ1
(⋓)j, γNQ1

(⋓)k)|⋓ ∈ ∆
}
, and

NQ2 =
{
(⋓, αNQ2

(⋓)i, βNQ2
(⋓)j, γNQ2

(⋓))k|⋓ ∈ ∆
}
.

Here γNQ1
(⋓) and γNQ2

(⋓) are two QNSs, the divergence measure between the QNSs NQ1
and NQ2

denotes
as JSQNS(NQ1

, NQ2
), and defined as:

JSQNS(NQ1 , NQ2) =
1

2

[
KL(NQ1 ,

NQ1 +NQ2

2
) +KL(NQ2

,
NQ1 +NQ2

2
)
]
,

with

KL(NQ1
(⋓), NQ1

(⋓)) = αNQ1
(⋓)log

αNQ1
(⋓)

αNQ2
(⋓)

i+ βNQ1
(⋓)log

βNQ1
(⋓)

βNQ2
(⋓)

j + γNQ1
(⋓)log

γNQ1
(⋓)

γNQ2
(⋓)

k.

where KL(NQ1 , NQ2) is the divergence measure between NQ1 , NQ2 . JSQNS(NQ1 , NQ2) can alternatively
be represented using the formula below:

JSQNS(NQ1 , NQ2) = A(
NQ1

+NQ2

2
)− 1

2
A(NQ1)−

1

2
A(NQ2)

=
1

2

[
αNQ1

(⋓)log
2αNQ2

(⋓)

αNQ1
(⋓) + αNQ2

(⋓)
i+ αNQ2

(⋓)log
2αNQ2

(⋓)

αNQ2
(⋓) + αNQ2

(⋓)
i

+βNQ1
(⋓)log

2βNQ1
(⋓)

βNQ1
(⋓) + βNQ2

(⋓)
j + βNQ2

(⋓)log
2βNQ2

(⋓)

βNQ1
(⋓) + βNQ2

(⋓)
j

+γNQ1
(⋓)log

2γNQ1
(⋓)

γNQ1
(⋓) + γNQ2

(⋓)
k + γNQ2

(⋓)log
2γNQ2

(⋓)

γNQ1
(⋓) + γNQ2

(⋓)
k
]
.

such that

A(NQ1
) = −(αNQ1

(⋓)logαNQ1
(⋓)i+ βNQ1

(⋓)logβNQ1
(⋓)j + γNQ1

(⋓)logγNQ1
(⋓))k.

A(NQ2
) = −((αNQ2

(⋓)logαNQ2
(⋓)i+ βNQ2

(⋓)logβNQ2
(⋓)j + γNQ2

(⋓)logγNQ2
(⋓))k.

where A(NQ1) and A(NQ2) are the Entropies for NQ1 and NQ2 . Then, we defined a new distance measure
for the QNSs in accordance with neutrosophic fuzzy divergence.

Definition 5.3. Let NQ1
and NQ2

be two QNSs in ∆, ∆ = {⋓1,⋓2,⋓3, ...,⋓n} where

NQ1 = {⟨⋓ℓ, αNQ1
(⋓)i, βNQ1

(⋓)j, γNQ1
(⋓)k⟩|⋓ℓ ∈ ∆} and

NQ2
= {⟨⋓ℓ, αNQ2

(⋓)i, βNQ2
(⋓)j, γNQ2

(⋓)k⟩|⋓ℓ ∈ ∆}.

Normalized quaternion neutrosophic distance dη measure between NQ1
and NQ2

is defined by

dη(NQ1
, NQ2

) =
1

n
Σn

ℓ=1dη(NQ1
, NQ2

)

=
1

n
[
1

2
(αNQ1

(⋓ℓ)log
2αNQ1

(⋓ℓ)

αNQ1
(⋓ℓ) + αNQ2

(⋓ℓ)
i+ αNQ2

(⋓ℓ)log
2αNQ2

(⋓ℓ)

αNQ1
(⋓ℓ) + αNQ2

(⋓ℓ)
i

+βNQ1
(⋓ℓ)log

2βNQ1
(⋓ℓ)

βNQ1
(⋓ℓ) + βNQ2

(⋓ℓ)
j + βNQ2

(⋓ℓ)log
2βNQ2

(⋓ℓ)

βNQ1
(⋓ℓ) + βNQ2

(⋓ℓ)
j

+γNQ1
(⋓ℓ)log

2γNQ1
(⋓ℓ)

γNQ1
(⋓ℓ) + γNQ2

(⋓ℓ)
k + γNQ2

(⋓ℓ)log
2γNQ2

(⋓ℓ)

γNQ1
(⋓ℓ) + γNQ2

(⋓ℓ)
k)]

1
2 .

Definition 5.4. Let NQ1
and NQ2

be two QNSs in ∆, ∆ = {⋓1,⋓2,⋓3, ...,⋓n} where

NQ1 = {⟨⋓ℓ, αNQ1
(⋓)i, βNQ1

(⋓)j, γNQ1
(⋓)k⟩|⋓ℓ ∈ ∆} and

NQ2
= {⟨⋓ℓ, αNQ2

(⋓)i, βNQ2
(⋓)j, γNQ2

(⋓)k⟩|⋓ℓ ∈ ∆}.
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Normalized Quaternion Neutrosophic distance measure dζ from NQ1
and NQ2

is defined as

dζ(NQ1 , NQ2) =
1

4n
Σn

ℓ=1dζ(NQ1
, NQ2

),

=
1

4n
Σn

ℓ=1(|αNQ1
(⋓ℓ)i− αNQ2

(⋓ℓ)i|+ |βNQ1
(⋓ℓ)j − βNQ2

(⋓ℓ)j|+ |γNQ1
(⋓ℓ)k − γNQ2

(⋓ℓ)k|

+2max{|αNQ1
(⋓ℓ)i− αNQ2

(⋓ℓ)i|, |βNQ1
(⋓ℓ)j − βNQ2

(⋓ℓ)j|, |γNQ1
(⋓ℓ)− γNQ2

(⋓ℓ)|}).

Definition 5.5. Let NQ1 and NQ2 be two QNSs in ∆, ∆ = {⋓1,⋓2,⋓3, ...,⋓n} where

NQ1
= {⟨⋓ℓ, αNQ1

(⋓)i, βNQ1
(⋓)j, γNQ1

(⋓)k⟩|⋓ℓ ∈ ∆} and

NQ2 = {⟨⋓ℓ, αNQ2
(⋓)i, βNQ2

(⋓)j, γNQ2
(⋓)k⟩|⋓ℓ ∈ ∆}.

Euclidean quaternion neutrosophic distance measure dδ from NQ1 and NQ2 is defined as dδ(NQ1 , NQ2)

= |NQ1
−NQ2

| = 1

4n
Σn

ℓ=1

√
[αNQ1

(⋓ℓ)− αNQ2
(⋓ℓ)]2 + [βNQ1

(⋓ℓ)− βNQ2
(⋓ℓ)]2 + [γNQ1

(⋓ℓ)− γNQ2
(⋓ℓ)]2

Definition 5.6. Let NQ1
and NQ2

be two QNSs in ∆, ∆ = {⋓1,⋓2,⋓3, ...,⋓n} where

NQ1
= {⟨⋓ℓ, αNQ1

(⋓)i, βNQ1
(⋓)j, γNQ1

(⋓)k⟩|⋓ℓ ∈ ∆} and

NQ2
= {⟨⋓ℓ, αNQ2

(⋓)i, βNQ2
(⋓)j, γNQ2

(⋓)k⟩|⋓ℓ ∈ ∆}.

The divergence quaternion neutrosophic distance measure dℑ from NQ1
and NQ2

is defined as

dℑ(NQ1
,NQ2

) = −ln2(
1

2
+

1

2n
Σn

ℓ=1(
√
αNQ1

(⋓)αNQ2
(⋓) +

√
βNQ1

(⋓)βNQ2
(⋓) +

√
γNQ1

(⋓)γNQ2
(⋓)))

Definition 5.7. Let NQ1 and NQ2 be two QNSs in ∆, ∆ = {⋓1,⋓2,⋓3, ...,⋓n} where

NQ1
= {⟨⋓ℓ, αNQ1

(⋓)i, βNQ1
(⋓)j, γNQ1

(⋓)k⟩|⋓ℓ ∈ ∆} and

NQ2
= {⟨⋓ℓ, αNQ2

(⋓)i, βNQ2
(⋓)j, γNQ2

(⋓)k⟩|⋓ℓ ∈ ∆}.

The γ −max quaternion neutrosophic distance measure dγ −max from NQ1 and NQ2 is defined as

dγ −max(NQ1
, NQ2

) =
1

3n
Σn

ℓ=1(|αNQ1
(⋓)− αNQ2

(⋓)|+ |βNQ1
(⋓)− βNQ2

(⋓)|+ |γNQ1
(⋓)− γNQ2

(⋓)|

+|max{αNQ1
(⋓), βNQ2

(⋓)γNQ2
(⋓), } −max{αNQ2

(⋓), βNQ1
(⋓)γNQ1

(⋓), }|)

Definition 5.8. Let NQ1 and NQ2 be two QNSs in ∆, ∆ = {⋓1,⋓2,⋓3, ...,⋓n} where

NQ1
= {⟨⋓ℓ, αNQ1

(⋓)i, βNQ1
(⋓)j, γNQ1

(⋓)k⟩|⋓ℓ ∈ ∆} and

NQ2 = {⟨⋓ℓ, αNQ2
(⋓)i, βNQ2

(⋓)j, γNQ2
(⋓)k⟩|⋓ℓ ∈ ∆}.

The Q-max (QM) quaternion neutrosophic distance measure d℘ from NQ1 and NQ2 is defined as

d℘(NQ1
, NQ2

) =
1

n
Σn

ℓ=1(
|αNQ1

(⋓)− αNQ2
(⋓)|+ |βNQ1

(⋓)− βNQ2
(⋓)|+ |γNQ1

(⋓)− γNQ2
(⋓)|

8

+|max{αNQ1
(⋓), βNQ2

(⋓)γNQ2
(⋓), } −max{αNQ2

(⋓), βNQ1
(⋓)γNQ1

(⋓), }|)
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Figure 2: Graphical representation of decision making strategy

6 Decision Making Strategy based on Quaternion Neutrosophic Distance Measure

This section presents a novel decision-making paradigm based on the quaternion neutrosophic distance mea-
sure. All the steps are shown in Figure 2.

Example 6.1. Considerations are given five records which are referenced in Table 1 data. Label 1 indicates
that the patient has a loss of taste in Table 1 titled ”Class of Loss of Taste.” Label 2 in Table 1 column for
”Class of Cough” indicates that the patient has a cough. Labe3 indicates that the patient has a fever or a chill
in Table 1 Class of Fever or Chill column. Label 4 in the Class of Body Aches column of Table 1 indicates
that the patient has body aches. Label 5 in Table 1 Vomiting column indicates that the patient has vomitus.
Considerations are given five records which are referenced in Table 2 data. Label 1 indicates that the patient

S Loss of Taste Cough Fever or Chill Body Aches Vomiting
Wade (0.8,0.3,0.6) (0.4,0.6,0.9) (0.9,0.8,0.6) (0.5,0.5,0.8) (0.6,0.4,0.6)
Ivan (0.3,0.4,0.8) (0.5,0.3,0.6) (0.7,0.9,0.9) (0.8,0.9,0.3) (0.4,0.5,0.5)
Jorge (0.3,0.2,0.2) (0.1,0.6,0.8) (0.9,0.3,0.4) (0.3,0.6,0.9) (0.6,0.9,0.8)
Dave (0.6,0.4,0.8) (0.3,0.4,0.1) (0.2,0.6,0.1) (0.8,0.3,0.9) (0.4,0.3,0.8)

Gilbert (0.6,0.4,0.3) (0.4,0.9,0.9) (0.8,0.8,0.9) (0.8,0.3,0.7) (0.6,0.7,0.6)

Table 1: Quaternion Neutrosophic fuzzy relation S(Patients→Symptoms)

has a viral infection in Table 2 column under ”Class of Viral Infection,” Label 2 in Table 2 Class of Malaria
column indicates that the patient has malaria. Labe3 indicates that the patient has Covid-19 in the Table 2
column labelled ”Class of Covid-19.” Label 4 in Table 2 column for ”Class of Dengue” indicates that the
patient has dengue. Label 5 indicates that the patient has chest issues in Table 2 column ”Chest Issues.” Table
3 displays how Table 1 and Table 2 are related.

We can find the outcomes of the diagnosis in Table 4. Using the following formulae on Quaternion neutro-
sophic numbers, the results of Table 3 become apparent.

αT (Pi, Fk) =
∨
s∈S

[αT (Pi, T )ΛαR(T, Fk)],

βT (Pi, Fk) =
∧
s∈S

[βT (Pi, T )
∨

βR(T, Fk)],
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T Viral Infection Malaria Covid-19 Dengue Chest Issues
Loss of Taste (0.3,0.5,0.9) (0.7,0.8,0.9) (0.6,0.7,0.8) (0.9,0.3,0.5) (0.5,0.3,0.7)

Cough (0.6,0.7,0.7) (0.8,0.3,0.4) (0.7,0.3,0.4) (0.5,0.6,0.7) (0.9,0.8,0.2)
Fever or Chill (0.9,0.6,0.3) (0.7,0.8,0.3) (0.0.8,0.3,0.1) (0.8,0.6,0.2) (0.2,0.3,0.9)
Body Aches (0.8,0.3,0.7) (0.9,0.3,0.4) (0.7,0.3,0.2) (0.6,0.4,0.5) (0.3,0.4,0.5)

Vomiting (0.6,0.7,0.3) (0.5,0.5,0.6) (0.6,0.2,0.5) (0.4,0.3,0.5) (0.5,0.3,0.4)

Table 2: Quaternion Neutrosophic fuzzy relation T(Symptoms→Diagnosis)

R Viral Infection Malaria Covid-19 Dengue Chest Issues
Wade (0.9,0.5,0.6) (0.7,0.5,0.6) (0.8,0.4,0.6) (0.8,0.3,0.6) (0.5,0.3,0.6)
Ivan (0.8,0.5,0.5) (0.7,0.3,0.4) (0.7,0.3,0.5) (0.7,0.4,0.5) (0.5,0.4,0.5)
Jorge (0.9,0.5,0.4) (0.7,0.6,0.4) (0.8,0.3,0.4) (0.8,0.3,0.3) (0.5,0.3,0.7)
Dave (0.8,0.6,0.3) (0.8,0.6,0.3) (0.7,0.3,0.3) (0.6,0.3,0.4) (0.5,0.3,0.4)

Gilbert (0.8,0.3,0.6) (0.8,0.3,0.6) (0.8,0.3,0.6) (0.8,0.3,0.6) (0.5,0.3,0.6)

Table 3: Quaternion Neutrosophic fuzzy relation R(Patients→Diagnosis)

γT (Pi, Fk) =
∧
s∈S

[γT (Pi, T )
∨

γR(T, Fk)].

After getting the information relationship between Patients→Diagnosis then To produce Table 4, we apply the
following formula to the neutrosophic quaternion numbers.

The procedure that follows is applied to the neutrosophic quaternion numbers after obtaining the data on the
relationship between Patients→Diagnosis to produce Table 4. SR = αR−βR.γR by observing the quaternion
numbers’ rule, ij = k, jk = i, ki = j.
In this Table 4 we can find that, IVAN and Dave are suffering in Malaria, Wada is infected with Dengue,Jorge

Viral Infection Malaria Covid-19 Dengue Chest Issues
Wade 0.6 0.4 0.56 0.62 0.32
Ivan 0.55 0.58 0.55 0.5 0.3
Jorge 0.7 0.46 0.68 0.71 0.29
Dave 0.58 0.62 0.61 0.48 0.38

Gilbert 0.58 0.62 0.62 0.62 0.32

Table 4: Results of Diagnosis

diagnosis Viral Infection and Gilbert have Symptoms of Malaria, Covid-19 and Dengue. The graphical behav-
ior of the results are shown in Figure 3.

6.1 Reliability

In this section, we test our results validly using the proposed distance measures (Euclidean Quaternion distance
measure) and compared our results with table 4. We use the data set of Table 1 and Table 2. Using proposed
Euclidean Quaternion distance measure the result is as In this Table 6 we can find that, IVAN is suffering in
Malaria, Wada and Jorge is infected with Dengue,Dave diagnosis Viral Infection and Gilbert have Symptoms
of Malaria, and Dengue. Using proposed divergence Quaternion distance measure the result is as In this Table
7 we can find that, IVAN and Dave are suffering in Malaria, Wada is infected with Dengue,Jorge diagnosis
Viral Infection and Gilbert have Symptoms of Covid-19 and Dengue. The graphical behavior of the results are
shown in Figure 4.
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Figure 3: Graphical representation of the results of diagnosis

R Viral Infection Malaria Covid-19 Dengue Chest Issues
Wade (0.9,0.5,0.6) (0.7,0.5,0.6) (0.8,0.4,0.6) (0.8,0.3,0.6) (0.5,0.3,0.6)
Ivan (0.8,0.5,0.5) (0.7,0.3,0.4) (0.7,0.3,0.5) (0.7,0.4,0.5) (0.5,0.4,0.5)
Jorge (0.9,0.5,0.4) (0.7,0.6,0.4) (0.8,0.3,0.4) (0.8,0.3,0.3) (0.5,0.3,0.7)
Dave (0.8,0.6,0.3) (0.8,0.6,0.3) (0.7,0.3,0.3) (0.6,0.3,0.4) (0.5,0.3,0.4)

Gilbert (0.8,0.3,0.6) (0.8,0.3,0.6) (0.8,0.3,0.6) (0.8,0.3,0.6) (0.5,0.3,0.6)
Maximize solution (0.9,0.6,0.6) (0.8,0.6,0.6) (0.8,0.4,0.6) (0.8,0.4,0.6) (0.5,0.4,0.7)
Minimize Solution (0.8,0.3,0.3) (0.7,0.3,0.3) (0.7,0.3,0.3) (0.6,0.3,0.3) (0.5,0.3,0.4)

Table 5: Quaternion Neutrosophic fuzzy relation R(Patients→Diagnosis)

R Viral Infection Malaria Covid-19 Dengue Chest Issues
Wade 0.025 0.035 0 0.04 0.03
Ivan 0.035 0.09 0.04 0.035 0.05
Jorge 0.05 0.06 0.06 0.08 0.025
Dave 0.079 0.083 0.075 0.075 0.079

Gilbert 0.079 0.08 0.025 0.08 0.035

Table 6: Results of Diagnosis

R Viral Infection Malaria Covid-19 Dengue Chest Issues
Wade 0.36 0.45 0.28 0.48 0.38
Ivan 0.76 0.92 0.81 0.64 0.68
Jorge 0.85 0.79 0.79 0.83 0.42
Dave 0.82 0.85 0.79 0.75 0.73

Gilbert 0.63 0.64 0.68 0.68 0.42

Table 7: Results of Diagnosis

7 Advantages of proposed method

Compared to other methods of decision-making, quaternion neutrosophic sets have a number of important
benefits.

1. For characterizing unpredictability in quaternion-based structures, QNSs are helpful. They can cap-
ture intricate fuzzy information that other fuzzy sets are unable to, such as uncertainty in magnitude
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Figure 4: Graphical representation of the reliability test of diagnosis

and direction. Intriguing characteristics of these data include the capacity to define fuzzy distance and
similarity measurements.

2. QNS can manage both data and decision-making process ambiguity. As a result, they are able to make
decisions when there is a lack of information, insufficient data, or uncertainty about the outcome.

3. These types of data permit the mixing of several components in a single model and can handle multiple
criteria and weighting. This offers a more thorough decision-making process that takes into account all
pertinent considerations.

4. In order to help decision-makers in complicated situations, QNSs may model complex systems and
capture the interactions between many factors.

5. Particularly when dealing with complicated or unclear data, QNSs can produce more accurate answers
than other decision-making strategies. They are thus particularly beneficial for applications involving
financial modeling, traffic control, and strategic planning.

6. However, the application-specific use and the kind of uncertainty being modeled determine whether
QNSs are better than other complex fuzzy sets. The benefits and drawbacks of various kinds of fuzzy
sets must therefore be carefully weighed in each individual situation.

7. Increasing the effectiveness of decision-making processes by lowering the time and resources needed for
complicated data analysis and interpretation is another key goal of the QNS. This is especially impor-
tant in today’s fast-paced, data-driven environment, where decision-makers must quickly and precisely
analyze a lot of information.

7.1 Limitations of the Model

• QNSs required substantial processing resources, which limits their applicability in real-time decision-
making contexts.

• Fuzzy quaternion sets are not widely used, which might make it challenging to compare and assess the
outcomes of various decision-making procedures.

• Usually, only specific kinds of decision-making procedures, such those involving complex systems or
multi-criteria decision-making, employ this kind of data.

• Three-dimensional illustrations of data are used in the QNSs, which may complicate decision-making
and make it more difficult to understand the findings.
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8 Conclusion

We come with complex and intricate data every day. We have developed methods and tools designed to
manage such complex data to increase our effectiveness and process comprehensive information. To reduce
voluminous data to a single value, the technique of aggregation entails costs. A powerful merger of a com-
plicated neutrosophic set gave rise to the idea of the quaternion neutrosophic set. This is especially helpful
in situations when each element has a range of possible values that can be affected by variables like an imag-
ined degree of membership, an imagined degree of indeterminacy, or an imagined degree of non-membership.
The first step is to build a quaternion neutrosophic set based on imagined membership degree, imagined in-
determinacy, and imagined non-membership degree. Also covered with examples are several fundamental
operators, such as complement, conjugate, magnitude, union, intersection, and the cartesian product. A novel
order relation and the concept of quaternion neutrosophic-based distance measurements were presented. These
theoretical methods provide a thorough method for deciphering unclear data. We suggested a quaternionify-
ing procedure to increase decision-making precision. To show the applicability of the suggested strategy, the
decision-making model is created using a novel quaternion distance measure. When employing neutrosophic
data, it has been recognized that fuzziness is a crucial step in the selection process. In addition, compared
to present approaches, which are unwilling to take into account the interrelationships of qualities in practi-
cal applications, the decision-making procedures proposed in this study exhibit higher precision and a wider
threshold. This suggests that many more connections between traits could be found when the decision-making
methods presented in this work are applied. Future research on tailored individual homogeneity control agree-
ment challenges, reaching agreements with difficult behavior control problems, and two-sided corresponding
decision-making with multi-granular and incomplete criterion weight information may benefit from the strate-
gies presented here. When analyzing the limitations imposed by suggested strategies, the levels of involvement,
abstention, and non-membership are irrelevant. On the foundation of the current research, future studies can
explore more quaternionification algorithms and improve the quaternionification parameters that are applied
to decision-making. One might also consider using quaternion numerical representations for expressing the
neutrosophic theory of sets and logic. In addition, linear programming strategies and neurosophic linguistic
sets will be examined together.
This study serves as an introduction to quaternion neutrosophic sets, and it is true that additional research is
still necessary to fully understand quaternion neutrosophic sets. The quaternion neutrosophic set discussed in
this work is a comprehensive generic idea that is not restricted to a single application.
Appendix: An addition to neutrosophic set theory known as the quaternion neutrosophic model (QNM) inte-
grates uncertainty, indeterminacy, and inconsistent decision-making. It is a mathematical strategy that seeks
to effectively integrate and handle complex situations involving several criteria. The imagined membership,
imaginary indeterminacy, and imaginary non-membership degrees make up the QNM. A three-dimensional
quaternion numeric value that reflects the level of membership of each set member is used to represent these
components. The QNM has been effectively used to address decision-making issues in a variety of domains,
including image processing, pattern recognition, robotics, and finance. In conclusion, the quaternion neu-
trosophic model offers a practical mathematical framework that can assist in handling challenging decision-
making issues by allowing for ambiguity, inconsistent behavior, and indeterminacy.
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