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Abstract

The notion of bipolar neutrosophic finite switchboard state machines (BNFSSTMs), homomorphisms and
strong homomorphisms of bipolar neutrosophic finite state machines (BNFSSTMs) are introduced and some
related results are studied.
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1 Introduction

In 1965, Zadeh! introduced fuzzy sets (FS). Assume that K is a non-empty set. A mapping ¢ : K — [0, 1] is a
FS of K. The FS theory has various expansions, such as intuitionistic fuzzy sets (IFSs), interval-valued fuzzy
sets (IVFSs), vague sets (VSs) and so on. With, the traditional fuzzy set representation it is difficult to express
the difference of the irrelevant elements from the contrary elements. Based on these observations, in 2000,
Lee? introduced (BVFS)bipolar valued fuzzy sets, an extension of fuzzy sets whose range of the membership
degree is enlarged from [0, 1] to [—1, 1]. As a result, the fields like medical science, algebraic structures, graph
theory, machine theory, decision-making, and so on have a thriving research field. The notion of neutrosophic
sets was introduced by Smarandache as a generalization of FSs, IFSs and IVFSs whose elements of the
universe have the degrees of truth (T), indeterminacy (I) and falsity (F) and the membership values (MSV) lies
in J0~, 11, the non-standard unit interval (N-S).

Malik*> developed the concept and approach of the fuzzy finite state machine (FFSM), fuzzy finite state sub-
machine (FFSbM) and their decomposition. The product of the (FFSM), as well as other associated aspects,
were proposed and studied by Kumbhojkar and Chaudhari in 2002 The fuzzy finite switchboard state ma-
chine (FFSSM) was presented by Sato and Kuroki in 20027 Jun introduced the notion of intuitionistic fuzzy
finite state machines (IFFSMs) in 2005.% Jun suggested a commutative intuitionistic fuzzy finite switchboard
state machine (IFFSSM) called the intuitionistic fuzzy finite switchboard state machine in 2006° Jun and
Kavikumar!¥ popularized the notion of the bipolar fuzzy finite state machine (BiFFSM) in 2011. Jun and
Kavikumar proposed the algebraic features of BIFFSMs and evaluated particular results in 2011. Mahmood et
al'!' introduced and researched single valued neutrosophic finite state machine homomorphism (SVNFSM),
strong homomorphism, and associated features in 2018. Prabhu et al ' studied finite state machines via bipolar
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neutrosophic set theory, Reena'?

in 2019.

investigated the bipolar vague finite switchboard state machine (BVFSSM)

Here, the notion of bipolar neutrosophic finite switchboard state machines (BNFSSTMs), homomorphism and
strong homomorphism of bipolar neutrosophic finite state machines (BNFSTMs) are introduced and some
related results are studied. Throughout the article, FS stands for a fuzzy set, BiNS stands for a bipolar neutro-
sophic set, BNFSTM stands for a bipolar neutrosophic finite state machine and BNFSSTM stands for a bipolar
neutrosophic finite switchboard state machine.

2 Preliminaries

Here, we will review a few standard definitions that are relevant to this work.
Definition 2.1. "' A mapping ¢ : Z — [0, 1] is represented as a F'S of a non-empty set Z.

Definition 2.2. ¥ A BiNS Ay in X is defined as an object of the form
Ay = {< & TH (€. 11, (€). F4 (6). T, (6).15,(€). Fi, (§) >: £ € X}

The positive (+Ve) membership degree TXN &), I;{N (&), FXN (£) denote the truth membership (T), indeter-
minate membership (I) and false membership (F) of an element of £ € X corresponding to a BiNS Ay and
the negative (-Ve) membership degree Ty (£), I (§), Fy,, (§) denote the truth membership (T), indetermi-
nate membership (I) and false membership (F) of an element of £ € X to some implicit counter-property
corresponding to a BiNS Ay.

Definition 2.3. ' A BNFSM is a triple By = (Qn, Xn, Ax) where Qx, Xy are finite non-empty sets
said to be the set of states and the set of input symbols respectively and Ay is a BINS in Qn X Xy X
Qn. Thus Ay = {(&, T4, (&), 14, (&), FA, (&), T, (€). 14, (&), F4,, (§)) | € € Qn x X x Qn} where
TXN,IXN7FZN QN X Xy X Qn — [0, 1] and TXN,IZN,FXN T QN X Xy X QN — [—1,0} with the
condition that 0 < T + I} +Fi +T, +1, +F; <6.

Example 2.4. Let Qn = {k,d} and Xy = {a} be finite nonempty sets of states and input symbols respec-
tively. Let Qn x Xn X Qn = {(k, a, k), (k,a,9), (d,a,k),(d,a,6)}. Thus Ay isa BINS in Qn x Xy X Qn,
ie, Ay = {< (k,a,k),0.5,0.3,0.1,—0.06, —0.04, —0.01 >,

< (k,a,9),0.8,0.5,0.4,—0.01, —0.05, —0.06 >,

< (d,a,k),0.3,0.2,0.7, —0.02, —0.003, —0.05 >,

< (6,a,6),0.3,0.4,0.5,—0.04, —0.05, —0.01 >}.

Thus, Ay is a BNFSM.

Definition 2.5. "2 Suppose By = (Qn, Xy, Ax) be a BNFSM. The BiNS Ay can be extended to other
BiNS

A}k\/:{(VvTX*I‘\,(V)aIXTV(V)vFX}‘V(V)vTX}‘V(V)v-[,gj\,(l/)’FXR,(V)) | VGQN XX;’ X QN}

where TX}‘v’IX?v’F;lL?v 1Qn X X3 x Qv = [0, and Ty Ty Fae 0 Qn x X x Qn — [-1,0]
and determined by

TH. (5 A0) ={Lifn =06;0,if s #6 }

Ij,;v(n, M\ 6)={l,ifx =06;0,ifk # 5}

FXR(H,A,é) ={0,ifk =8;1,ifxn #6 }

Tg’;v(”’)‘vé) ={-1,ifk =6;0,ifk £0 }

Ig}(v(n, \0)={-1,ifk =6;0,ifx # 6}

FX*N(/@)\,(S) ={0,ifk =0;—-1,ifk £ }.

Also,

- Tt _ + +

i) TA?V(H, va,8) = VreQn [TA?V (kyv,m) ATy (1,a,0)]
ii)IXTV('{’ va,0) = VreQy [I:{}‘V (K, v,1m) A I;{N (rya,d)]
R e _ + +

uz)FAJ*V (k,va,0) = Nregy [FA?V (k,v,m)V FY (r,a,0)]
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iv)Tg}] (k,va,0) = Nreqy [TX}“\/ (k,v,m) VT, (1,a,0)]
)L, (K,va,0) = Areqy [y (5, v,7) VI (r,a,0)]
m’)ngV (K, va,8) = Vyegn [ngV (k,v,m) NFy (1, a,0)],
Vk,0 € Qn,v € Xjanda € Xy.

Theorem 2.6. 2 Let By = (Qn, XN, AN) be a BNFSM. Then
i) T+?V(I$, vy,0) = Veeon [TX;‘\, (K, v,1) A TX?V (ryy,9)]

ii)[jl*v (k,vy,0) = Vyeon [IX}«V (k,v,7) A Ij"?v (ryy,9)]
iii)ij_j\, (K, vY,0) = AreQn [F;{'}‘V (k,v, 1)V FXI*V (r,y,0)]
iv)T;?V (K, vY,0) = AreQy [T;}FV (k,v, 1)V TX*N (r,y,0)]

v)]Zyv (k,vy,0) = Aregn [127V (k,v, 1)V IZ; (r,y,0)]
m’)Fjj*V (K, vY,0) = VreQn [ngv (kyv, 1) A FER (r,y,0)],
Vk,6 € Qn and v,y € X%

3 Bipolar neutrosophic finite switchboard state machines

Let X3, mean the set of all words of elements of X of finite length. Let A signify the empty words in X3, and

|v| indicate the length of v for each v € X3,.

Definition 3.1. A BNFSM By = (Qn, Xn, Ay) is said to be switching if it satisfies

T4 (6,h,¢) =T, (¢, h,5)
I3 (6,h,¢) = I}, (C.h,6)
Fj. (8,h,¢) = F}, (¢, h,0)
Ty (6,h,¢) = Ty (¢ 1, )
Ly (0,h,Q) = Iy, (¢, By 0)

FA_}‘V(57ha<) = FA_*N(tha 5)7
VC,(SEQN and h € Xy.

(0.3, 0.6, 0.4, -0.005, -0.06, -0.06)
b

(0.8, 0.5, 0.1,-002,-0.05, -0.01)
i

(0.8,0.5,0.1,-0.02,-0.05, -0.01)
i

(0.3, 0.6, 0.4, -0.005, -0.06, -0.06)
b

)

(0.2, 0.5, 0.6, -0.04, -0.05, -0.03) /_\ (0.5, 0.6, 0.7, -0.2. -0.005, -0.003
I

A |
1 P /
(0.2,0.5,0.6, -0,04, -0.05, -0.03) }\ /( (0.5, 0.6, 0.7, 0.2, 20,005, -0.003)
a — h

Figure 1: BNFSM-Switching

Definition 3.2. A BNFSM By = (Qn, Xn, Ay) is supposed to be commutative if it fulfills

T3 (8,ab,¢) = T}, (8,ba,C)
IX?\] (6a aba C) = IX?\] (55 ba7 C)
FX}‘V (67 aba C) = FX}‘V (53 ba7 C)
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Tg}«v (6,ab,¢) = ngv (6,ba,()

Ilg}kv (6,ab,¢) = IZ?v (6,ba,()

Fu (6,ab,¢) = Fyo (6,ba,()

V(,0 € Qn and a,b € Xy.

Example 3.3. The BNFSM in Figure[T]is not commutative.

Definition 3.4. If a BNFSM By = (Qn, X, An) is both switching and commutative, then is a BNFSSM.

(0.02,0.02, 0.02,-0.02, -0.01, -0.02)
a

(0.03, 0.03, 0.01, -0.01. -0.01, -0.01)
b

\

(0.02, 0,02, 0,02, -0.02, -0.01, -0.02)
a

(0.03, 0,03, 0.01,-0.01, -0.01, -0.01)
b

Figure 2: BNFSSM

Theorem 3.5. If By = (Qn, XN, An) is a commutative BNFSSM, then
TX;‘\, (6,va,C) = TXJ*\, (6, av, )

IX;‘\,(‘S’ va,() = IX}*V (6, av, Q)

Fy, (6,va,¢) = Fi. (6,ar,()

T, (6,va,Q) = Ty, (3, ar,C)

I3, (6,v0.) = L, (6.a1,)

FX}«V((57V(I’C) = F;jv((sval/vg),

V(,0 € Qn,a € Xyandv € Xy,

Proof. Given By = (Qn,Xn,An) is a commutative BNFSSM. Let (,6 € Qn anda € Xy and v € X3
We claim the outcome by doing induction on |v| = n. Assume that n = 0. Then v = A. Thus
TX?\] ((;a Va7 C) = TX}‘V (57 >‘a’a C) = TX?\] (63 a7 C) = TX}‘V (57 CL)\, C)
= TX’I‘V (57 av, <)
+ _ 7t —_ 7t _ 7t
IA’}‘V (6,va,C) = IAJ*V (0, Aa, () = IAR(é,a,C) = IAJ*V(cS, aX, ()
= IZ}‘V (57 av, C)
FX}V (6,va,() = FXJ*V (6, Ma,¢) = FX}V (4,a,¢) = FX;, (6,a\, Q)
= FX;, (6,av,¢)
Tg}kv (6,va, () = Ty (0, Xa,¢) = TX;} (6,a,¢) = Ty (6,aX,¢)
= Tg?](é, av, )
IA;KV((S, va,() = Iy (0,Aa,¢) = IA?V((S,a,C) = IA]*V((S7 aX, )
= I;?V((S, av, )
FX}‘V((Sv va, C) = F;}‘V((S? Aa’a C) = F;}‘V((S?aac) = F,Z}‘V((S?CLA’C)
=Fy. (6, av,Q).
Assume the outcome is valid Vu € X3 for |u| = n — 1, where n > 0. Suppose b € Xy be such that v = ub.
Thus
+ _ 7t
TA}‘V ((Sa va, C) : TA}‘\, (57 Uba7 C—Z
= SUDPg,eqQn (TA;‘V (63 U, p) A TA}‘V (pv baa C))
= SUPg,eqQn (TX}‘V (63 U, p) A TX}‘V (pv ab, C))
= TX;V (6, uabd, C)
= SUPgeqn (TX}‘\, (57 ua, {Q) A TXN (@7 b, C))
https://doi.org/10.54216/IJNS.210204 62
Received: January 10, 2023 Revised: April 20, 2023 Accepted: May 12, 2023



International Journal of Neutrosophic Science (IJNS)

Vol. 21, No. 02, PP. 59-70, 2023

— sy (T (6,au,9) ATY, (9,5,0))
= TX?]((S, aub, )

T Gav0)

I;{;v (6,va,() = IXJ*V (0, uba, ¢)

= Sup e (I (10, 9) A T (9, 00,))
= sup e (L (5. ) A Ty (9,0,0))
= IX?V((S, uab, )

= SUPpeQy (IZ’;V (6, ua, p) A IZN (0,6,¢))
= suppeqy (Lis (6, au, 0) AT (9,6,€))
= IZTV(& aub, ()

— I (6.av. )

FX}V (6,va, () = FXJ*V (6, uba, C)

= ianEQN (FX}‘V (67 u, p) V FX}‘\, (9, ba, C))
= inf@eQN(FX}*V (0, u, p) V F:{}kv (p,ab,())
= FZTV (0, uab, ¢)

=inf,coy (FZ}*\, (6,ua, )V Fi (p,b,¢))
— infpequ (Fis (8au,0) V FL (9,5,0))
= FZ*N (6, aub, C)

= FX;V (6,av,¢)

T;?V (6,va,C) = T;?\r (6, uba, ¢)

= infpeqy (TZ}‘V (6, u, ) V TX}‘V (p,ba, ()
=infoeqy (TX*;V (6,u, ) V Ty, (p,ab,())
= T;;V (6, uabd, C)

= ianGQN (TX*;\, (6, ua, p) v TXN (,b, C))
= infoeqy (TX}‘\, (6, au, p) v TXN (,0,0))
=T (6, aub, ¢)

— T3 (8,av.)

Iy (6,va,() = Iy (0, uba, ¢)

=infpeqy (IZ;‘\, (6,u, ) V IZ;V (,ba,q))
=infoeqy (IZ}*V (6, u,p) V IZ;‘V (p,ab,())
= IZ?V((S, uab, ()

=infpeqy (IZ’;\, (6, ua, p) v IZN (9,6,¢))
=infpeqy (IZ*I‘\, (6, au, p) v IZN (0,6,¢))
= IZTv(a’ aub, ()

— I (6.av. )

F. (6,va, () = F (6, uba, C)

= SUPueqy (ng\, (6, u, p) A FX*;V (,ba,())
= supeqy (Fay, (6, u, ) A Fy. (p,ab, Q)
=Fy. (0, uab, ¢)

= suP,cqy (Fax, (6, ua, p) A Fy (9,b,¢))
= SUPyeqy (Fax (0, au, ) AFy (9,b,C))
=Fy. (6, aub, C)

=Fy. (6, av,Q).

Hence the outcome is true for |v| = n.

Theorem 3.6. If By = (Qn, XN, An) is a BNFSSM, then

T (0,h,¢) = T4 (¢, 1, 6)
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Fi, (6,h,¢) = Fi. (¢, h,0)

F;}*V (67haC) = FX}} (Cah7 6):
V(,0 € Qn and h € X},

Proof. Given By = (Qn,Xn,An) is a BNFSSM. Let (, 6 € Qn and h € X. We claim the outcome by
induction for |h| = n if n = 0, then h = . Thus

T, (0,0,¢) = T4, (8,A,¢) =Tx, (¢, A,8) =T, (.1, 6)
I3 (0,h,¢) = I} (6,7, Q) = I (¢, A 0) = I}, (G, h,9)
Fu, (0,h,¢) = Fi. (6,X,¢) = Fii. ((,\,6) = FX* (¢, h,0)
Ty, (0,h,C) =T (6,A,0) =Ty, (G, A, 6) =Ty (¢, 0)
IE;V(& h,¢) = IX;,(&%C) = IE;V(C,A,é) = IAR(CJ%‘;)

Accordingly the outcome is valid for n = 0. The outcome is valid all b € X% with [b| =n —1,n > 0, we
have

+ — 7t + 7t + -t
TA;,((;’b»C) —TA* (¢,b,0), IA* (6,b,¢) = IA* (¢,0,0), FA* (6,b,¢) = FAyv(va‘S)’

TX;}(& b,¢) = A* (¢,0,0),1 A* (6,b,¢) = IA* (¢.0,0), F (5,b7 Q)= FX;V(vaa 9).
Letrv € Xy andh € Xy be such that h = bv. Then

T 000 =T (6 by, ) = sub e [T (6,6, 9) AT (9, )]

= supeq, T4 A (9.5,) A5, (v p)]
= SuppEQN[ A* (p,b,9) /\TX* (¢ v, 9)]
= supcqy (T4, (¢, 9) ATX* (mb 5)]
= TA* (¢, vb, 5) TA* (¢, by, 5) (
IA* (6 h,() = IA* (6,bv,¢) = suppeQN[
— Suppeqy [ (9:5.0) AT, (G2, )
= supgeq, (i (9:0,8) AL (Gv,p)]
= SUPueqQy [Ijlj\, (G v, 0) A IX;V (,0,0)]
= I%. (¢,vb,0) = I, (¢, bw,0) = I, (C,a,0)

F3. (8,h,Q) = Fj, (8,bv,¢) = infoeqy [Fi; (6,0,0) V Fi (p,v,C)]
= infoeqy [FX;,(@ b,6) Vv FXN (v, 0)]

= infoeqy [Fiz (9,0,0) V Fi. (¢, v, 0)]

= infoeqy [Fis (¢ v, 0) V i (9,0,0)]

=Fy, (¢ vb,0) = F}. (¢,bv.6) = Fy, (¢,a,0)

T, (8,h,C) = Ty (6.b1.C) = infcon [Tay (6..9) V T (9,1,C)]
— infpequ [T (9.5,0) VT, (G2, p)

— infpequ[Tas (9.5,0) VT, (G2, p)

=infoeqy [Tay (G v, 0) V Ty, (9,0,0)]

= T (C.vh,8) = Ty, (C,b,0) = Ty, (C,a,0)

I3 (3,h,€) = Iy, (8,b0,C) = infpequ Lzs (8,b,9) V I3, (9,1 )]

= infoeqy [IZ;V(@ b,6) V Iy, (¢ v, )]

= infoeqy T4y (9,6,0) V I (¢ v, 9)]

=infoeqy [Iy: (G v,t) V Iy (0,0, 0)]

= I3, (C.vb0) = I3, (C.b,8) = I3, (C,a,0)

F;]*V (6,h,¢) = F,Z;V (6,bv,¢) = supgeq, [Fa. A%, (6,b,0) NFy (@7 v, Q)]
= suP,cqu [Fax, (9,0,0) A Fy (G, v, )]

)
(5 b,p) AN} (9,7,0)]
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— Supycqu [P (9:5,0) A P, (C019)

= SupPEQN [FXR, (Cv v, p) A FX}*\, (@7 b7 5)]

= FXTV(C,Z/b,(S) = FXE(C,I)V, 0) = FX;\](Caaa 9).

Thus the result is true for |b] = n. O

Theorem 3.7. If By = (Qn, XN, AN) is a BNFSSM, then
T;{}kV (6,ab,¢) = T:{?V (6,ba,()

Ij{?v (6,ab,¢) = IX?V (6,ba,()

F;{yv (6,ab,¢) = F:{;, (6,ba, )

TX;Q, (6,ab,¢) = TX;, (6, ba, ¢)

I, (8,0b.€) = L (6,ba.C)

Fye (6,ab,¢) = Fao (6,ba, (),

V(,0 € Qn and a,b € X}

Proof. Given By = (Qn, XN, An) is aBNFSSM. Let {, € Qn and a,b € X3 . We claim by induction on
|b| = nif n =0, then b = A. Thus

T;{7V (6,ab,¢) = T:‘}V (6,a\,¢) = TXTV((S’ a,¢) = T:‘}V (6, Xa, C)

= TX?] (0,ba, ¢)

Ij&v(é, ab, () = IZ?V((S, a\, ¢) = Ij?](é,a,g) = IX;,((S’ Aa, ()

= IX;,(‘S’ ba, ¢)

FZ}‘V (57 a'bv C) = FZ}‘V (6a Cl)\, C) = FZ}‘V (& a, C) = FX;‘V (5a )‘av C)

= FZ*N (57 ba7 C)

T;}‘v (6a aba C) = TA_}‘V (65 llA, C) = T;}‘V (67 a, C) = T,Z}‘V (53 ACL, C)

= T;’I‘V (57 ba’a C)

I/-_l}‘v (63 CLb, C) = IZ}‘V (6’ aAa C) = IZ*N (57 aa C) = IZ}‘V (63 Aaa C)

= IZ}*\, (57 baa C)

ng\r (6,ab,¢) = FXQ (6,aM, () = Fg7V (6,a,0) = F;;V (6, Aa, Q)

= ngv (6,ba, Q).

Thus the outcome is valid for n = 0. Assume the result is true for [b] = n — 1, ie., Ve € X3 with
lc] =n —1,n > 0. Letb € ¢ be such that b = ¢p. Thus

T;lr}‘\] (67 ab7 C)

= TX}*\] (6a acp, C)

= SUP,cqy [T+1*V (6,ac,r) A TXN (r,p, ¢
= SUp,cqy [TX]*V (6,ca,r) A TZN (r,p, ¢
= SUDP,.cqp [le_y\, (r,ca,d) A TZN ¢, p,r
= SUPrecqy [TZN (Cv D, T) A TX}*\, (T7 ca, 5
= TX}‘V (C7pca7 6)

= SUPrecqQy [TX}‘V (Cv pe, T) A TX’I‘V (T7 a, 6)]
= SUPeqy [TX}‘V (Ca cp, T’) A TXR, (7", a, 6)]
= TX}“\, (C? cpa, 5)

= TX}‘\, (57 cpa, C)

= TX}‘V (67 baa C)

Ijﬁr}‘\] (67 abu C)

= IX}*V (& acp, C)

= Sup,eqy |
= sup,.eQN[
= Sup,eqy |
= SupT‘EQN[
= I‘X’z‘v (C)pca7 6)
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)]
)]
)]
)]

d,ac,r) A IZN (r,p, ¢
0, ca,r) A IZN (r,p, ¢
T, ca,0) /\IZN(C,p,T
¢,p, 1) /\IX?V (ryca,d

I ( )
Ij. ( )
I;. ( )
I )
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= SUD,.cqy [IX}V (¢, pe,r) A IX;, (rya,d)]
— sup,cqu [T (G cprr) A T (1y0,0)
= Ijj\]((,cda,é)

— I (G epa,6)

= I:{?V((S, ba, ¢)

F;, (8,ab,€)
= FA* (6, acp, Q)
lnfreQN[FA (6,ac,m) V F L (rp, Q)]
= infyequ [, (5, cair) V F, (rp. )
= mfreQN[FA (r, ca, )\/FAN (¢, p,7)]
meGQN[FA (C,p,7m)V FA* (r,ca, d)]
=Fj. (¢, PC(I d)
1nfreQN[ - (¢, pe, )V FX*N (r,a,d)]
= inf,eqy [Fi (§, cp,r)V Fj, (r,a,0)]
= FA* (¢, cpa, 5)
= FA* (¢, cpa, §)

= FAjv (6, ba, ¢)
TX;‘V (6a Clb, C)

= T;* (6, acp, ¢
lnfTEQN[TAN d,ac T) ( Ay 2 )
— infrequ[Tas (6, ca,r) V Ta (1, C)

)

( ]

( ]

mfreQN[TA;V(T ca, d) \/TA (¢, p,7)]

= infreqn[Ta, (¢ p,7) V Ty (1, ca,6)]

=Ty, (¢ pea,d)
lnfreQN[TA* (¢ pe,r) V Ty (r,a,6)]
= infreqn [T, (C,cp,r)vTA*( r,a,0)]

=Ty (¢, epa, 6)

=Ty (¢, cpa, )

— T3 (8,ba,)

I3, (6,ab,0)

= IZ;V (6, acp, ¢

d,ac,r) VI, (r,p,C)

7, p,()

)

— infrequ 17, ( 9. 0)]
=infreqy [IIZR (6,ca,r) VvV Iy ( ]
=infeqy [IXJ*V (r,ca,0) vV Iy, (¢ p,7)]
= infreQN[IgN (¢, p,m)V IA* (r,ca,d)]
~ I, (C.pea.d)

=infreqy [IXI*V(

= inf,eqy [I;lj*\,(

~ I3 (G epa,0)

= I;R(C,ba,é)

= IZ?V(& ba, ¢)

F;?v (6,ab, Q)

= F;* (6, acp, Q)

= supTGQN[FA* (6,ac,r) A Fy, (r

= Sup,.cq [Fx (5 ca,7) N Fy (r,p,
= SuprGQN[FA}‘V (r,ca,6) A FAN(C7P7
= SUp,.cqy [Fa Ay (Gpr) A ng\, (r,ca,d

C7pca T‘) \ IX}‘V (7’7 a7 6)]
¢, ep,r) V IXR; (rya,d)]

D, ¢
¢
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= FA}‘V (C,pca, 6)

= SUDP,cqy [Fg%(g,pc, r)A
= sup, e, [, (C.epm) A
— B (C.cpad)

— Fy. (¢,pa,)

=F (6,ba,¢).

This shows that the outcome is valid for |b| = n.

Fy, (r,a,0)]
Fy. (r,a,9)]

,N (r,

O

Definition 3.8. Let M = (QNh Xn1, ANI) and My = (QNQ, Xno, AN?) be two BNFSMs. A pair (§, Q) of
mappings ¢ : Qn1 — Qn2 and o : X1 — X2 is said to be a homomorphism written as (s, ) : My — Mo

if it satisfies
TXNl (53 v, C) < TAN2 (§(§), Q(V)v S C )
I 0,0,0) <TE (50
Fi o (6,v,¢) > Fj{NZ (s(8

Iy, 0,v,.0) = I (<(6), 0(v),<(C))
Fuo, 0,v,Q) < Fy (s(6), 0(v),<(C)),
VC,(S S QNl and v € XN1~

Example 3.9. Define o : Q1 — Q2 and 8 : X1 — X2 as follows a(p) = r,a(q) = s,8(a) = a and

B(b) =b. Then (o, 8) : M1 — M2 is a homomorphism.

(01, 0.4, 0.5, -0.04, 005, -0.01)
b

(0.6,0.3, 0.2, 0,04, -0,04[-0.07) (0.6, 0.4, 0.7, 0,01, -0.05, -0.06) (04,0305, -0.01,-0,02, -0.04)
a

(02,02, 0.6,-0.02,-0.04, -0.06)
a

(0.3, 0.2, 0.8, -0.02, -0.003-0.05) (0.2,0.2,04,-0.03, 005, -0.05) (0.4, 04409, -0.02, -0.03, -0.02)
b b

Figure 3: M1

(0.3, 0.6, 0.4, -0.005, -0.06, -0.06)
b

(0.7,04,0.1, -0.06, -0.05)-0.06) (0.8,0.5,0.1,-0.02,-0.05, -0.01) (0.4, 05102, -001,-0.03,-0.02)
a a

(0.6,04,03,-0.02_-0.04, -0.01)
a

(03,0507, -0.02, -0,07[-0.05) (0.6, 0.6, 0.1, -0.03,-0.05, -0.04) (0.5, 0.5]0.1,-0.02, -0.04, -0.01)
b b b

Figure 4: M2 (Homomorphic image of M1)

Definition 3.10. Let M; = ((51,XN1,AN1) and M, = ((52,XN2,AN2) be two BNFSMs. A pair (§, Q)
of mappings ¢ : @n1 — @n2 and ¢ : X1 — Xpo is said to be a Strong homomorphism written as

(g, 0) : My — Mo if it satisfies

T, (s(8), 0(v),5(Q)) = VAT, (0,1, 1) | £ € Qu1,s(t) = <(O)}

IXN2(€(5) 0o(),<(¢)) = VT4, (6, v, 1) [ t € Qn1,s(t) = <(O)}
Fi ., (s(0), 0(v),s(€)) = M{ AM(&VJ)HEQNL () =<(O)}

TAN2(§(5)7 0(¥),5(0) = MTy, (6,1,8) [ £ € Qna,s(t) = <(O)}

14, ((0),0(v),5(C) = A{1',4“(5 vt) |t € @nu,ys(t) =<(0)}
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e, (6(0),0(v),s(Q) = V{F,, (0,v,t) | t € Qni,s(t) = <(O)}

VC,(S eEQniand v € Xy

If Xny1 = X2 and p is the identity map, then a homomorphism or strong homomorphism ¢ : My — My is
one-one and

IXNQ (g(a)v Q(V)7 C(C)) = IXNl (65 v, C)
Fi L, (6(6),0(),5(¢) = Fi ., (6,v,0)
Ty, (5(0), 0(¥),6(Q) = Ty, (6,7, C)

Fy 0, (s(8),0(v),<(Q) = Fy, (6,v,C),
VC,(? €Qniand v € X ;.

Theorem 3.11. Suppose My = (01, Xn1, An1) and My = (62, Xn2, An2) be two BNFSMs. Let (s, o) :
My — Ms be an onto strong homomorphism (SH). If My is commutative, then so is Ma.

Proof. Suppose 12,52 € Qno. Thus, 71,51 € Qn1 D ¢(r1) = o and ¢(s1) = sa. Suppose 2,9 € X no.
Then there exist 11,61 € Xn1 3 o(11) = 22, 0(€1) = €2. Since M; is commutative , we have

Ty, ,(r2, 282, 82) = Thx (s(r1), o(vi)e(e1),5(51))

=T (s(r), o(vier),<(s1))
=V{T+;V1(7“17V1€1,M1) | p1 € Qn1,s(p) =<(s1)}
=V{T4, (ri,eiv,m) | 1 € Quu,s(i) =<
=TXN2(<(T1)7Q(€1V1),€(51))

=TZ}§,2 (ro, €912, 82)

iy (r2, 1062, 80) = I (s(r1), e(v1)elen), < (s1))
= IX;VQ(g(Tl)»Q(V151)7<(81))

=V{IL, (rivienm) | m € Quu () = <(s1)}
=V{I}, (riewnm) | m € Quu, () = <(s1)}
=IXN2(<(7"1)79(511/1),§(81))

=1, (r2,e21,52)

FX;\,Q(T% Vo€a, S2) = FX}KW(C(H), o(v1)o(e1),s(s1))
= FXM(g(Tl)aQ(V1€1)a§(81))

=AFi. (riven,m) | € Quss(un) = <(s1)}
=/\{FXE1(7‘1,€1V17/~01) | 1 € Qni,s(pr) =

=Fy ., (s(r), e(e11),5(51))

=FX}2(7’2,521/2,52)

Ty (ra,vaea,80) = Ty (s(r1), o(v1)e(e1),<(s1))
=Ty, (s(r1), 0(rie1),5(s1))

=MTa; (r,men m) | € Qnass(pa) = <(s1)}
=MTyy, (ri,e1vn,m) [ pn € Qv s(p) =
=T, (s(r1), 0(e111), 6(s1))

=T1;7V2 (ro, 914, $2)

Ly, (rasvaga, 89) = I (<(r1), e(n)e(en), s(s1))
= Iy (s(r1), o(rie1), <(s1))

=My, (rvien, m) [ € Qv s(pa) = <(s1)}
=My (r,ewvn,m) [ € Qua,s(p) =
=l ., (s(r1), o(e1v1),(s1))

=IIX1*V2 (ro, 914, $2)

Fi (ra, 1982, 82) = Fyi (s(r1), e(v1)e(en), s (s1))
= Fy. (s(r1), o(vi€1),5(s1))

=V{Fy. (ri,vien, ) | o € Qi) = <(s1)}
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=V{F,. (r, e ) | € Qi) = <(s1)}

=Fy ., (s(r1), o(e1v1),<(s1))

=FX;«V2 (re, €91, 52).

Hence M5 is a commutative BNFSM. O

Theorem 3.12. Suppose My, = (Qn1,Xn1,An1) and My = (Qn2, Xn2, An2) are two BNFSMs and
(s,0) : My — My a strong homomorphism. Then for all §,r € QN1 and for all v € X N provided that
TXM (s(9), 0(v),s(r)) > Oand T (s(9),0(¥),s(r)) <03t € QN1 TZNl(é, v,t) > O,Tgm(é7 v, t) <0
and ¢(t) = ¢(r),

I3, (5(6), 0w),5(r)) > 0and I (<(6),0(v),s(r)) <03t € Qny suchthar I} (8,v,t) > 0,15 (6,v,t) <
=q(r),

FZNz (s(9), 0(v),s(r)) <Oand I (s(0),0(r),s(r)) >03t € QN1 > FXNl((S, v,t) <0,F;  (6,v,t) >0
and ¢(t) = ¢(r).

Moreover, Vp € Qn1 if <(€) = <(9),

T:{m (6,v,t) > T:{Nl (6,v,71)

I, Gty > I3 (v,

FZN] (0,v,t) < FXNI (6,v,71)

TXNI((S, v,t) < TXM((S, v,r)

IXNI((Z v, t) < IZNl(é, v,T)

F;Nl(é, v, t) > F;Nl((;, v, r).

Proof. Let(,0,r € Qn1 and v € X1, we have

TH  (s(6),0(v),s(r)) = V{TK  (6,v,5) | s € Qn1,5(s) =<(r)} > 0 and

Ty, ((0),0v),s(r) = MTy,, (0,v,8) | s € Qn1,5(s) = <(r)} < 0 (by strong homomorphism).
Since Q1 is finite, 3t € Qn1 3 s(f) = ¢(r) and

T;{Nl(é, v,t) = V{TXM(& v,8) | s€Qn1,s(s) =¢(r)} > 0and

Ty, (6w t) = MTy, (6,v,8) | s € Qn1,s(s) =<(r)} <O0.

Suppose ¢(¢) = ¢(d). Then

Ty, 0,0, 8) =Ty, (s(0), 0(v),5(r) = Ty, (s(C), 0(v), 5(r))

<Tj, ((v,r)and

Th,, (6,0, t) = T4, (s(6), 0(v),s(r) = Tx,,(s(C), 0(v),s(r))

=Ty, (Cvr).

Now, I} (s(8), 0(v),s(r)) = V{IL  (0,v,8) | s € Qn1,5(s) = <(r)} > 0 and

Iy, (s(8),0(v),c(r) = MI,, (0,v,8) | s € Qn1,5(s) = <(r)} < 0 (by strong homomorphism).
Since Q1 is finite, 3t € QN1 D <(t) = ¢(r) and

IXNI((S, v,t) = V{Ij{m(é, v,8) | s€Qn1,s(s) =¢(r)} > 0and

Iy, (vt) = /\{IXNl(é, v,8) | s€Qn1,s(s) =c(r)} <0.

Suppose ¢(¢) = ¢(d). Then

Iy Ovt) =Ty (c(6), 0(v),<(r)) = T4, (s(C), o(v),<(r))

<I,, (¢vr)and

I, Gvt) = I1,(s(8), 0(v),s(r) = I, (s(C) 0(v), s(7))

> I5 (Grr).

Now, Fi (<(6), 0(v),s(r)) = M{F1{  (6,1,5) | s € Qn1,5(s) =<(r)} <0and

Fy L (6(0),0(v),s(r) = V{F,, (6,v,5) | s € Qni,5(s) = s(r)} > 0 (by strong homomorphism).
Since Q1 is finite, It € QN1 D <(t) = ¢(r) and

FZM((S, v, t) = /\{Fj,'m(é7 v,8) | s€Qn1,s(s) =¢(r)} <0and

FXM(& v, t) = \/{Fgm(é7 v,8) | s€Qn1,s(s) =c(r)} >0.

Suppose ¢(¢) = ¢(d). Then

Fyo (6, t) = Fy (<(0), 0(v),<(r) = Fy ., (s(C), o(v),s(r))

> Fy. ((v,r)and

Fio @vt) = Fi (s(6), 0(v),s(r) = Fi,(s(C), 0(v),s(r))

< FXNl(C, v,T). O
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4 Conclusion

The notion of BNFSSMs, homomorphisms and strong homomorphisms of BNFSMs are introduced and some
related results are studied. We will continue to work on BNFSM decomposition, as well as many other con-
cepts, in the future.
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