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Abstract 

Precision medicine is an innovative approach to healthcare that relies on the use of genomic data, electronic health 

records, and other types of medical data to develop personalized prevention, diagnosis, and treatment strategies for 

patients. The use of artificial intelligence (AI) in precision medicine has the potential to improve patient outcomes and 

reduce healthcare costs, but it also raises significant privacy concerns. This paper provides a comprehensive review 

of the privacy nightmares associated with the use of AI in precision medicine. We examine the potential risks and 

threats to patient privacy, including the use of personal data for unintended purposes, the risk of data breaches and 

hacking, and the potential for discrimination and bias. We also analyze the legal and ethical implications of using AI 

in precision medicine, including issues related to informed consent and data ownership. Our investigation highlights 

the need for strong data protection regulations and ethical frameworks to safeguard patient privacy in the age of AI in 

precision medicine. As the use of AI in precision medicine continues to expand, the paper presents a road for future 

directions for protecting patient privacy, including the use of privacy-preserving machine learning algorithms and the 

adoption of privacy-enhancing technologies. 
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1. Introduction 

Precision medicine, also known as personalized medicine, is a rapidly advancing field in healthcare that aims to 

provide tailored prevention, diagnosis, and treatment strategies for individual patients based on their unique genetic 

makeup, environment, and lifestyle. This approach is a departure from traditional medicine, which typically relies on 

a one-size-fits-all approach that may not work as well for all patients. The rise of precision medicine has been driven 

by recent technological advancements, including the ability to analyze large amounts of genomic data and the 

development of targeted therapies. With precision medicine, doctors can identify specific genetic mutations or 

biomarkers that may be driving a patient's disease and develop targeted treatments to address those specific factors. 

Precision medicine has already shown promising results in the treatment of a variety of diseases, including cancer, 

cardiovascular disease, and rare genetic disorders. However, the field is still in its early stages, and there are many 

challenges to overcome, including the cost and complexity of genomic testing and the need for more robust clinical 

trials [1-3]. 

Artificial intelligence (AI) is playing an increasingly important role in precision medicine. AI can be used to analyze 

large amounts of data, including genomic data, electronic health records, and medical imaging, to identify patterns 

and insights that may be difficult or impossible for humans to detect. One of the main applications of AI in precision 

medicine is in the development of personalized treatment plans. AI algorithms can analyze a patient's genomic data, 
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along with other clinical and demographic information, to predict how that patient is likely to respond to different 

treatments. This information can help doctors develop more targeted and effective treatment plans, improving patient 

outcomes and reducing healthcare costs [4]. Another area where AI is being used in precision medicine is in drug 

discovery. By analyzing vast amounts of data, including genomic and proteomic data, AI algorithms can identify 

potential drug targets and help researchers develop new drugs more quickly and efficiently [5]. AI is also being used 

to improve diagnostic accuracy. For example, machine learning algorithms can analyze medical images, such as CT 

scans and MRIs, to identify patterns and abnormalities that may be indicative of disease. This can help doctors make 

more accurate diagnoses and develop more effective treatment plans [7]. 

The paper contributes to the growing body of research on the use of AI in precision medicine, providing a 

comprehensive review of the privacy nightmares associated with this technology. We also analyze the legal and ethical 

implications of using AI in precision medicine. Informed consent, data ownership, and privacy regulations are crucial 

considerations for the use of AI in precision medicine, and the paper provides insights and recommendations for 

addressing these issues. Finally, we present a comprehensive road map for future research on the private aspects of 

precision medicine. This road map can provide an insightful guide to the community, that aims to pave the way for 

further research in this field. The remainder of this research is organized into five sections presented in Figure 1.  

2. Background & Literature 

 Precision medicine is a rapidly developing field that uses AI and machine learning to analyze large amounts of patient 

data to develop personalized treatment plans. While this approach promises to revolutionize healthcare, it also poses 

significant privacy challenges. The use of personal health information (PHI) raises concerns about the security and 

confidentiality of sensitive data. Patients have a right to expect that their PHI will be protected and used only for their 

benefit, and not shared or sold without their consent. In addition, the use of AI raises questions about the transparency 

and accountability of decision-making algorithms, which can have life-and-death consequences for patients. If AI-

based systems are not developed and used responsibly, they could exacerbate existing health disparities and create 

new ones [8]. 

One of the primary challenges facing AI in precision medicine is the need to balance privacy and data access. On the 

one hand, researchers and healthcare providers need access to large amounts of data to develop accurate algorithms 

and treatment plans. On the other hand, patients have a right to control their PHI and to know who is accessing it and 

for what purpose. Another challenge is ensuring that AI-based systems are transparent and accountable. Patients have 

a right to understand how decisions about their health are being made and to have access to information that can help 

them make informed decisions about their treatment options. Finally, there is a need to address the potential for bias 

in AI algorithms, which could exacerbate health disparities by perpetuating existing biases and creating new ones. To 

overcome these challenges, stakeholders in the precision medicine field must work together to develop transparent 

and accountable AI-based systems that prioritize patient privacy and prioritize equity in healthcare delivery [9]. 

The research literature on the privacy challenges confronting AI in precision medicine is extensive and growing 

rapidly. Scholars have identified a range of privacy concerns related to the use of AI in healthcare, including the need 

to protect PHI, ensure algorithmic transparency, and address potential bias. Studies have also examined the legal and 

Figure 1: Organization of this study. 
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ethical implications of using AI in precision medicine, and have proposed various frameworks and guidelines to guide 

responsible AI development and deployment [10]. For example, some researchers have suggested that data governance 

frameworks be developed to ensure that data is collected and used in a way that is respectful of patient privacy and 

that data-sharing agreements be put in place to ensure that patient data is shared only with authorized parties. In 

addition, research has focused on the technical challenges of ensuring that AI-based systems are transparent and 

accountable. For example, scholars have explored ways to develop explainable AI models that allow patients and 

clinicians to understand how decisions are being made. Other research has focused on developing methods for 

detecting and mitigating bias in AI algorithms, such as using diverse training data and developing bias mitigation 

techniques. A summary of Literature studies on privacy preservation is given in Table 1. 

Table 1: Summary of the literature studies on privacy preservation. 

References Technologies Contributions  Downsides Year  

[15] 
IoT, IIoT, Security, 

CPS 

A detailed analysis of 

IIoT security concerns 

and attacks on layered 

architectures. 

Propose only a 

study of recent 

states-of-art 

2018 

[16] BSCS ABE 

Solve supply chain 

resource interaction 

security issues 

Lack of 

comparative 

results  

2019 

[17] 
Blockchain, Smart 

Contract, 

A comprehensive survey 

on Blockchain scalability 

and data capacity of IIoT 

Propose only a 

study of existing 

solutions 

2019 

[18] Blockchain, DRL 
Optimize IIoT 

scalability/throughput. 

Lack of 

comparative 

results 

2019 

[19] Data mining 

Defines typical supply 

chain risk and how the 

company controls 

network risk. 

No case study 

was proposed  
2019 

[20] Blockchain, BLMS 

Study of a blockchain-

based logistics 

monitoring system 

(BLMS). 

Lack of 

comparative 

results  

2019 

[21] Big data 

Discuss supply chain 

management success 

aspects that earlier 

studies missed. 

No case study 

was proposed  
2019 

[14] 

Blockchain, Smart 

Contract, 

Classification 

Summarize security 

issues of blockchain-

based IoT and IIoT 

No case study 

was proposed  
2020 

[5] e-Healthcare, IoT 

data 

anonymization/access 

control mechanisms. 

No case study 

was proposed 
2020 

[13] e-Healthcare, IoT FL  Narrow scope  2020 

[8] 
wireless sensor 

networks 

classification trees for the 

multifaceted challenge of 

privacy protection in 

healthcare 

No case study 

was proposed 
2020 

 

3. Privacy Preservation Solutions 

In this section, we will discuss the different types of privacy preservation methods used in precision medicine, 

including data Anonymization, pseudonymization, differential privacy, homomorphic encryption, and federated 
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learning (FL) (See Figure 2). We will explore the benefits and drawbacks of each approach and discuss how they can 

be used to protect patient privacy while still enabling the development of effective AI-based healthcare systems. 

3.1. Anonymization and pseudonymization techniques  

Anonymization and pseudonymization are two common techniques used to preserve privacy in precision medicine. 

Anonymization involves removing all identifiable private data from a record, rendering it untraceable to an individual 

patient. This technique is widely used in medical datasets, and anonymization software is often built into clinical data 

archiving systems, making it a straightforward method in practice. However, errors in the anonymization process can 

render the protection ineffective, and the definition of "sufficient" de-identification varies across different 

jurisdictions, complicating the establishment of international standards. Furthermore, de-identification techniques are 

typically employed as a preparation for data transfer or sharing, which presents issues if a patient withdraws their 

consent or if legislation changes. 

Pseudonymization, on the other hand, involves replacing sensitive entries with artificially generated ones while still 

allowing re-attribution using a look-up table. This technique requires data manipulation rather than just data deletion, 

and the look-up table must be safely kept separately. While pseudonymization provides an additional layer of 

protection by making it more difficult to trace a record back to an individual, it poses additional difficulties compared 

to anonymization. For example, the look-up table can be problematic in the setting of insecure storage, risking data 

theft. Technical errors can also render the protection ineffective, and retaining institution names can make an entire 

dataset identifiable [11-14]. The distinction between different aspects of the above methods is given in Table 2. 

Table 2: Comparison between Anonymization and pseudonymization 

Criteria Anonymization Pseudonymization 

Definition Removal of private data from a record Replacement of sensitive entries with 

artificially generated ones while still allowing 

re-attribution using a look-up table 

Figure 2: visualization of process of privacy-preservation in precision medicine. 
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Methodology Data deletion Data manipulation 

Look-up table Not required Required 

Safekeeping Not required Required 

Data theft risk Low High 

Protection Straightforward Additional layer 

Ineffectiveness Errors in the process Technical errors, retaining institution names 

Data Ownership Uncouples data governance from data 

ownership 

Uncouples data governance from data 

ownership 

Legislation Issues of legislation changes Issues of legislation changes 

Imaging dataset Varies in difficulty to link back to an 

individual 

Varies in difficulty to link back to an 

individual 

Re-identification 

risk 

Low, but not zero Low with appropriate security measures in 

place 

Utility loss High if data is removed, some if masked Low if generated data is realistic 

Data analysis Limited by removal of sensitive data More robust, but requires a look-up table 

Regulatory 

compliance 

May meet HIPAA standards May meet HIPAA standards 

Ethical 

considerations 

May not respect patient autonomy May not respect patient autonomy 

Transparency No guarantee of transparency More transparent with a look-up table 

Data Sharing Possible with appropriate security 

measures in place 

Possible with appropriate security measures in 

place 

 

3.2. federated machine learning 

FL is an approach to AI in precision medicine that has the potential to preserve privacy by allowing different 

institutions or individuals to collaborate on a shared model without sharing their private data. This is achieved by 

training a model using data that remains in its original location, while only the model parameters are shared with a 

central server for aggregation. This approach ensures that sensitive patient data is not shared across different 

institutions, reducing the risk of data breaches and privacy violations. Additionally, federated machine learning can 

improve the accuracy of models by allowing larger and more diverse datasets to be used for training. One key 

advantage of federated machine learning is that it allows institutions to maintain control over their own data while still 

benefiting from a collaborative model [15]. This is particularly useful in precision medicine, where institutions may 

have limited access to large, diverse datasets due to data privacy concerns. By combining their data in a secure and 

privacy-preserving way, institutions can improve the accuracy and effectiveness of their models, leading to better 

patient outcomes. Additionally, federated machine learning can help address issues of data bias by allowing models 

to be trained on more diverse datasets from different institutions and populations. Overall, federated machine learning 

has the potential to revolutionize AI in precision medicine by enabling collaboration while maintaining data privacy 

and security [16]. A summary of FL algorithms is given in Table 3. 

Table 3: An overview of FL algorithms for preserving the privacy learning process. 

FL Algorithm Advantages Disadvantages 

Federated Averaging 

(FedAvg) 

Simple to implement, scales well to large 

numbers of participants, and can handle 

non-iid data. 

Can suffer from slow convergence and may 

require a large number of communication 

rounds to achieve convergence. 

Federated Stochastic 

Gradient Descent 

(FedSGD) 

Can achieve faster convergence than 

FedAvg and can handle non-iid data. 

Can suffer from high variance due to small 

batch sizes and may require careful tuning 

of the learning rate and regularization. 

FL with Secure 

Aggregation 

(FedSecAgg) 

Provides strong privacy guarantees using 

homomorphic encryption and differential 

privacy. 

Can be computationally expensive and may 

require specialized hardware for efficient 

implementation. 
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Federated Group 

Knowledge Transfer 

(FedGKT) 

Allows for transfer of knowledge across 

similar groups of participants while 

preserving privacy. 

Can be computationally expensive and may 

require careful tuning of hyperparameters. 

Robust Federated 

Aggregation (RFA) 

Provides robustness against participant 

dropouts and malicious attacks by using 

outlier-resistant statistics. 

Can be computationally expensive and may 

require careful tuning of hyperparameters. 

Federated Meta-

Learning (FedMA) 

Enables faster convergence and improved 

generalization by learning shared model 

architectures across participants. 

May require specialized hardware and 

careful tuning of hyperparameters. 

Federated Distance 

(FedDist) 

Allows for privacy-preserving similarity 

comparisons between data sets without 

sharing data directly. 

Requires careful tuning of hyperparameters 

and may suffer from reduced accuracy 

compared to methods that use raw data. 

Federated 

Distillation 

(FedDistil) 

Allows for training a smaller and more 

efficient model at the edge devices by 

distilling knowledge from a larger, 

centralized model. 

May suffer from reduced accuracy 

compared to the centralized model and may 

require careful tuning of hyperparameters. 

 

3.3. Differential privacy 

Differential privacy has emerged as a promising approach for protecting the privacy of patient data in precision 

medicine. By adding random noise to a dataset, differential privacy can ensure that individual patient records cannot 

be easily identified, while still enabling statistical analysis of the dataset as a whole. This is particularly important in 

precision medicine, where patient data can be extremely sensitive and personal, and where the use of machine learning 

and other advanced analytics techniques can potentially reveal even more personal information. 

In precision medicine, differential privacy can be used to enable data sharing and collaborative research among 

healthcare providers and researchers without compromising patient privacy. By implementing differential privacy 

techniques, healthcare providers and researchers can ensure that they are only accessing data that has been sufficiently 

anonymized to prevent the identification of individual patients. This can help to build trust among patients and ensure 

that they are willing to participate in research studies and share their data with healthcare providers [17]. 

One of the main advantages of differential privacy in precision medicine is that it enables the analysis of large, complex 

datasets that would otherwise be too difficult to analyze due to privacy concerns. For example, differential privacy 

can be used to enable the analysis of genetic data from large patient cohorts, providing insights into the underlying 

genetic basis of complex diseases. By ensuring that patient privacy is protected, differential privacy can also enable 

the development of more personalized treatments and therapies, leading to better outcomes for patients. However, it 

is important to note that differential privacy is not a silver bullet and that additional measures may be needed to ensure 

that patient data is used in a responsible and ethical manner. 

Formally speaking, differential privacy can be defined as follows. Let 𝐷1 and  𝐷2 be two neighboring datasets, where  

𝐷2 is obtained by adding or removing a single record from 𝐷1. A randomized algorithm A satisfies epsilon-differential 

privacy if, for any possible output S of A, and any pair of neighboring datasets 𝐷1 and  𝐷2: 

𝑃𝑟[𝐴(𝐷1) = 𝑆] ≤ 𝑒𝑥𝑝(𝜖) ∗ 𝑃𝑟[𝐴(𝐷2) =  𝑆] (1) 

where 𝑃𝑟[𝐴(𝐷1) = 𝑆] represents the probability that algorithm 𝐴 produces output 𝑆 when given dataset 𝐷1 as input. 

In simple terms, this definition states that a randomized algorithm satisfies differential privacy if the probability of 

producing a particular output when given a dataset 𝐷1 is only slightly different from the probability of producing the 

same output when given a dataset 𝐷2, which differs from 𝐷1 by only one record. The degree of difference is controlled 

by the parameter epsilon, with smaller values of epsilon providing stronger privacy guarantees. 

Differential privacy can be classified into two main types: local differential privacy (LDP) and global differential 

privacy (GDP). LDP involves the addition of noise to the data at the individual level. In LDP, each user adds random 

noise to their data before sharing it with a central server or other parties. The noise added to the data helps to mask 

the specific data of each individual, thereby preserving privacy. LDP is a promising technique for ensuring privacy in 

scenarios where individual data needs to be protected, such as in medical studies where data contains sensitive personal 

information. GDP, on the other hand, involves the addition of noise to the aggregate data. GDP methods add random 
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noise to the aggregate data to ensure that the information about any individual is not revealed in the analysis. This 

method is typically used for analysis on large datasets where individual-level data may not be required for analysis. 

GDP has been used in scenarios such as recommendation systems and market research, where the main goal is to 

analyze trends in the data rather than individual behavior [18]. 

The choice between LDP and GDP depends on the type of data and the analysis required. For example, if the analysis 

requires access to individual-level data, then LDP would be the best choice to ensure that the data remains private. If 

the analysis is only focused on the trends in the data, then GDP can be used to ensure that the data is analyzed while 

preserving privacy. It is important to note that both LDP and GDP have their strengths and weaknesses, and choosing 

the right approach requires careful consideration of the specific use case and the desired level of privacy protection. 

At the algorithmic level, differential privacy can be incorporated into ML solutions for precision medicine in several 

ways. One common approach is to use randomized data perturbation techniques, such as adding noise to the data or 

using random sampling, to ensure that individual patient records cannot be easily identified. These techniques can be 

applied to both the input data and the output of the ML model, helping to protect patient privacy at all stages of the 

analysis. Another approach is to use differentially private versions of ML algorithms, such as differentially private 

logistic regression or differentially private decision trees. These algorithms modify the standard ML algorithms to 

incorporate differential privacy constraints, such as adding noise to the data or modifying the learning algorithm to 

limit the amount of information that can be learned about individual patients. This can help to ensure that the ML 

model is trained on privacy-preserving data, while still achieving high levels of accuracy and performance. 

Differential privacy can also be used in combination with FL approaches for privacy-preserving analysis of distributed 

healthcare data. Differential privacy can be incorporated into FL in several ways. One approach is to use differentially 

private stochastic gradient descent (DP-SGD) to train the shared model, which adds noise to the gradient updates to 

protect individual patient records. This can help to ensure that the model is trained on privacy-preserving data, while 

still achieving high levels of accuracy and performance. Another approach is to use differential private aggregation 

techniques to combine the local model updates from each party. This can help to ensure that individual patient records 

are not leaked during the aggregation process, while still allowing for effective collaboration and model training. 

One of the key challenges associated with differential privacy is finding the right balance between privacy and utility. 

DP introduces noise or random perturbations to the data, which can make it more difficult to extract meaningful 

insights from the data. As a result, achieving a high level of privacy often comes at the cost of reduced accuracy and 

reliability of the analysis [19]. To mitigate this challenge, it is important to carefully design privacy-preserving 

mechanisms that can balance privacy and utility and to tune the parameters of these mechanisms to achieve the desired 

level of privacy while minimizing the loss of utility. 

Another challenge associated with differential privacy is the potential for privacy attacks. Even when using DP, there 

is always a risk that an attacker may be able to infer private information about an individual by analyzing multiple 

versions of a dataset. For example, an attacker could use set intersection attacks to identify individuals who appear in 

multiple versions of the same dataset or use auxiliary information to learn more about individuals than is revealed in 

the DP-protected dataset. To address these challenges, it is important to carefully evaluate the privacy guarantees 

provided by differential privacy mechanisms, and to implement additional privacy protections, such as data masking 

or access controls, where necessary. Additionally, researchers must remain vigilant and adapt to emerging privacy 

threats and attacks to ensure that their DP mechanisms remain effective and secure. 

 

3.4. Homomorphic encryption 

Homomorphic encryption (HE) is a cryptographic technique that allows computation to be performed directly on 

encrypted data, without the need to first decrypt the data. In other words, homomorphic encryption enables secure 

computation on encrypted data, which can help to protect sensitive data from unauthorized access or disclosure. HE 

is a powerful tool for privacy-preserving computation, as it allows data to be processed and analyzed without ever 

exposing the raw data to anyone except the data owner. For example, in precision medicine, HE could be used to 

enable secure analysis of genomic data across multiple institutions, without the need to share the raw genetic data. 

Instead, each institution could encrypt their data and send it to a central location for analysis, while retaining control 

over their own data [20]. 
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There are several different types of HE, including fully homomorphic encryption (FHE), partially homomorphic 

encryption (PHE), and somewhat homomorphic encryption (SHE). FHE is the most powerful type of HE, as it allows 

arbitrary computations to be performed on encrypted data, but it is also the most computationally intensive and 

currently not yet practical for most real-world applications. PHE and SHE are less powerful, but more efficient and 

currently more practical for use in real-world applications.  While HE is a promising tool for privacy-preserving 

computation, it is still an emerging technology and there are several challenges associated with its implementation. 

These include issues related to performance and scalability, as HE can be computationally expensive and slow, and 

may not scale well to large datasets or complex computations [10-17]. 

3.5. Blockchain  

Blockchain technology has the potential to play a significant role in preserving the privacy of patient data in precision 

medicine. Precision medicine involves the use of individual-level data, such as genetic information, to tailor medical 

treatments and interventions to the specific needs of a patient. However, this data is sensitive and highly personal, and 

patients are understandably concerned about their privacy. Blockchain technology can offer a secure and decentralized 

way of storing and sharing patient data, which can help protect patient privacy. One of the main benefits of using 

blockchain technology in precision medicine is that it allows for secure and private sharing of patient data. Blockchain 

technology uses cryptography to secure the data, and once the data is entered into the blockchain, it cannot be altered 

or deleted. This means that patient data can be stored securely and accessed only by authorized parties, such as 

healthcare providers, researchers, and patients themselves. Additionally, because the blockchain is decentralized, there 

is no single point of failure or vulnerability, which further enhances the security and privacy of patient data. Another 

benefit of blockchain technology in precision medicine is that it can enable patients to maintain greater control over 

their own data. Patients can choose which data to share with whom, and they can revoke access to their data at any 

time. This can help patients feel more empowered and in control of their own healthcare, which can lead to better 

health outcomes. Moreover, patients can receive compensation for sharing their data with researchers or healthcare 

providers, which can incentivize them to participate in research and contribute to the advancement of precision 

medicine [8-7]. 

Blockchain technology can be classified into several types based on its accessibility and governance. These include 

Public Blockchain, Private Blockchain, Consortium Blockchain, and Hybrid Blockchain. Each of these types of 

blockchain has different characteristics and can be applied in various ways in the field of precision medicine. A Public 

Blockchain is a decentralized and open network that is accessible to anyone. This type of blockchain is entirely public, 

and anyone can participate in the network and contribute to the validation of transactions. Public blockchains are 

entirely transparent and offer high levels of security due to the large number of participants who verify transactions. 

In precision medicine, public blockchains can be used to store and share anonymized patient data, enabling researchers 

to analyze large datasets and develop new treatments and interventions. A Private Blockchain, on the other hand, is a 

closed network that is only accessible to a specific group of participants. In precision medicine, private blockchains 

can be used by hospitals, research institutions, or pharmaceutical companies to store and share sensitive patient data 

securely. Private blockchains are more centralized than public blockchains, which can increase the speed and 

efficiency of transactions [4-9]. 

A Consortium Blockchain is a hybrid between public and private blockchains. It is a decentralized network that is 

owned and controlled by multiple organizations. In precision medicine, a consortium blockchain can be used to enable 

the sharing of patient data among multiple healthcare providers or research institutions. The consortium blockchain 

can provide a secure and transparent way of sharing data while maintaining privacy and security. Finally, a Hybrid 

Blockchain is a combination of public and private blockchains. It is a flexible network that can switch between public 

and private modes depending on the needs of the application [9-11]. In precision medicine, a hybrid blockchain can 

be used to enable the sharing of anonymized patient data while maintaining the privacy of sensitive data. The hybrid 

blockchain can be configured to allow certain groups of participants to access private data while still enabling the 

public to contribute to the validation of transactions. In Table 4, we provide a comparative review of different types 

of Blockchains for precision medicine. 
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Table 1: Summary of different types of Blockchain for precision medicine  
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4. Outlooks 

Privacy preservation for AI in precision medicine is an important area of research that is constantly evolving. In this 

section, we introduce some future outlooks for privacy preservation in AI and precision medicine: 

• Greater patient control over data: Patients are becoming increasingly aware of the importance of privacy and 

control over their health data. Future developments in precision medicine are likely to give patients greater control 

over their data, including the ability to choose who can access their data, how it is used, and for what purposes. 

• Improved data-sharing agreements: As precision medicine research becomes more collaborative, there will be a 

need for better data-sharing agreements that balance privacy concerns with the need for sharing data. Future 

developments in this area are likely to involve the development of standardized agreements that protect patient 

privacy while enabling the sharing of data for research purposes. 

• Increased use of blockchain technology: Blockchain technology is already being used in precision medicine to 

protect patient privacy by enabling secure and transparent sharing of data. Future developments in blockchain 

technology are likely to make it even more effective in preserving patient privacy and enabling the secure sharing 

of data among different stakeholders. 

• More stringent regulations: Governments around the world are introducing more stringent regulations to protect 

patient privacy in the context of AI and precision medicine. As AI and precision medicine continue to evolve, 

policymakers may develop novel regulatory frameworks to govern the use of patient data in these fields. These 

frameworks could incorporate privacy-preserving measures and establish standards for data use and sharing that 

prioritize patient privacy. 

• Emphasis on transparency and explainability: As AI becomes more prevalent in precision medicine, there may 

be an increased emphasis on transparency and explainability. This could help to ensure that patients understand 

how their data is being used and can make informed decisions about whether or not to share their data with 

researchers or clinicians. 

• Using case studies in future research related to privacy preservation for AI in precision medicine can help to shed 

light on important issues and provide actionable insights for stakeholders. By using this approach, researchers 
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can help to promote the responsible and ethical use of AI in precision medicine while ensuring that patient privacy 

and confidentiality are protected. 

 

5. Conclusions 

This review explores some of the key challenges and risks associated with the use of AI in precision medicine, as well 

as some of the strategies and techniques that can be used to mitigate these risks. We seek to highlight the importance 

of transparency, explainability, and patient control over their own data, as well as the potential benefits of different 

types of blockchain in preserving privacy. More, we explore different types of privacy-preservation methods in 

precision medicine along with the specifications associated with each of them in taxonomized fashion. While much 

work remains to be done in this field, the future direction for privacy preservation in AI and precision medicine is 

promising. As stakeholders across the healthcare ecosystem work together to protect patient privacy and 

confidentiality, we can ensure that the benefits of AI in precision medicine are realized while minimizing the potential 

risks to patient privacy. By continuing to explore these issues and develop effective strategies for privacy preservation, 

we can help to promote the responsible and ethical use of AI in precision medicine for the benefit of patients and 

society. 
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