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Abstract 

 The Internet of Things (IoT) has become a ubiquitous technology that enables the collection and analysis of large 

amounts of data. However, the limited resources of IoT devices pose challenges to enabling responsive decision-

making. Many communications are required for network training, yet network updates can be very big if they include 

many parameters. Participants and the IoT ecosystem both bear the brunt of federated learning's high Latency due to 

the magnitude of its communications infrastructure requirements. In this paper, we propose a Federated Knowledge 

Purification (FKP) approach based on dynamic reciprocal knowledge purification and adaptive gradient compression, 

two strategies that allow for low-latency communication without sacrificing effectiveness, which enables responsive 

IoT devices with limited resources. The FKP approach leverages a collaborative learning approach to enable IoT 

devices to learn from each other's experiences while preserving the privacy of their data. A smaller model is trained 

on the aggregated knowledge of a larger model trained on a centralized server, and this smaller model can be deployed 

on IoT devices to enable responsive decision-making with limited computational resources. Experimental results 

demonstrate the effectiveness of the proposed approach in improving the performance of IoT devices while 

maintaining the privacy of their data. The proposed approach also outperforms existing federated learning methods in 

terms of communication efficiency and convergence speed. 

Keywords: Internet of Things (IoT); Federated Learning; Knowledge Purification; Latency; Communication 

Overhead 

1. Introduction 

The Internet of Things (IoT) is a rapidly growing network of interconnected devices, sensors, and appliances that can 

collect and sharing data. This vast network has the potential to revolutionize industries ranging from healthcare to 

manufacturing. However, the massive amounts of data generated by these devices present a significant challenge for 

data processing and analysis. Federated learning (FL) is an emerging approach to machine learning that addresses this 

challenge by enabling collaborative model training across multiple devices without requiring centralized data storage. 

In FL, a central server coordinates the training of a machine-learning model by aggregating updates from multiple 

devices. Each device trains the model locally using its own data, and then sends the updated model parameters to the 
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server for aggregation. The server then sends the updated model back to the devices, which repeats the process with 

new data. This iterative process continues until the model converges [1-3]. 

FL has several advantages over traditional machine learning (ML) approaches, especially for IoT applications. It 

enables real-time model training and updates, reduces the need for data transmission, and protects user privacy by 

keeping data on the device. Additionally, FL can leverage the diversity of data collected from different devices to 

improve the accuracy and robustness of the trained models. FL has already been successfully applied in several IoT 

use cases, including predictive maintenance, energy optimization, and smart homes. For example, in predictive 

maintenance, FL can be used to train machine learning models on data collected from multiple sensors on a device, 

enabling early detection of potential failures and reducing downtime. In energy optimization, FL can be used to train 

models on data collected from multiple smart meters, enabling more accurate prediction of energy demand and 

improving energy efficiency. In smart homes, FL can be used to train models on data collected from multiple sensors 

and devices, enabling personalized and context-aware automation. As the number of IoT devices continues to grow, 

FL is likely to become an increasingly important approach to machine learning. Its ability to enable collaborative and 

distributed model training without compromising privacy or requiring centralized data storage makes it an attractive 

solution for many IoT use cases. 

While training ML algorithms on decentralized data, users' privacy is somewhat protected because the conveyed 

network updates encompass much fewer confidential details than the original information. As the server and 

participants work together in a FL setup, they must constantly update each other on network changes as they are made 

during the training process. Therefore, if the network is large, the communication cost will be prohibitive. Regrettably, 

recently, deep learning networks have grown increasingly colossal, containing billions of trainable parameters. This 

is especially impractical for distributed participants with low communication bandwidth and throughput because of 

the high overhead that can result from transmitting such large networks. Recent times have seen intensive studies into 

how to maximize the effectiveness of FL communication [3]. As an example, gradient compression can be used to 

directly shrink network updates, making them more manageable. When the compression ratio needs to be 

exceptionally high, nevertheless, they typically lose a lot of performance. Additionally, because of the small network 

capacity, compacting the global network's updated information may also diminish the network’s ability to handle the 

diversity of decentralized data. For FL to function efficiently in terms of communication, another popular methodology 

is distillation. If the local network is bigger than the public open dataset, this strategy may lower the communication 

overhead by only transmitting the local network's forecasts on the sharable set of data. Information is extremely 

privacy-sensitive and might not be capable of being shared or transferred in many practical systems, including 

individualized recommendations and the comprehension of electronic health records. Thus, FL which is efficient in 

terms of connectivity, latency, and data accessibility while maintaining confidentiality presents a significant but as-

yet unanswered dilemma [4]. 

In this work, we present a cross-silo FL system that relies on the distillation of knowledge (KD) to reduce the burden 

on network communications without sacrificing learning effectiveness, wherein participants have access to more 

powerful computations as well as big volumes of privately kept training samples than individual appliances. 

Specifically, a small network (student) and a large network (teacher) learn and share knowledge together, whereas the 

student network is sharable among multiple participants and learned cooperatively, which could also dramatically 

lower the communication overhead between the participants and server. We offer an intelligent reciprocal purification 

(RP) technique to empower the local teacher and student networks to get finetuned by distilling knowledge from their 

forecast delicate labels and intermediary outcomes, in which, the purification severity is dynamically managed by the 

rightness of their forecasts. Finally, we implement a singular value decomposition (SVD)-based vibrant gradient 

interpolating technique to compact the transmitted updates with interactive exactness, which could also fulfill a viable 

tradeoff between performance and network latency by reducing the communication overhead associated with 

communicating the student network's updated information. 
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2. Methodological Solution 

Herein, we lay out the specifics of our knowledge-purification -based FL methodology, which allows for more 

effective communication between participants. Starting with a definition of the problem at hand, we proceed to 

introduce our method in detail before wrapping up with some debate on the computing and network complexity of our 

method [6-8]. 

A. Problem definition 

Our method is based on the supposition that 𝑁 participants each have their own personal information stored locally, 

with the source data never leaving the participant in which it is kept. The 𝑖 − 𝑡ℎ participant's dataset is referred to as 

𝐷𝑖 . In our method, each participant stores a replicate of a relatively small, shared student network 𝑆 with parameters 

Θ𝑖
𝑠 and a huge, local Teacher network 𝑇𝑖  with parameters Θ𝑖

𝑡. Additionally, these participants are coordinated by a 

central server to facilitate collaborative network learning. The target is to learn a robust network while maintaining 

individual privacy and reducing overall communication overhead, thereby the latency of the IoT solution. 

 

B. Federated knowledge purification 

This subsection proceeds to describe our federated framework for distilling knowledge. Participants use a dynamic 

RP mechanism to learn from each other in a two-way process by continuously computing the update to their local 

teacher and student under the guidance of their locally labeled data. To be more specific, the teacher is upgraded on a 

per-participant basis while the student network is communicated and learned by all participants. Local teacher 

networks are more complex than student networks, so the student network can benefit from the instructive information 

encoded in the teacher network. Since the student network has access to data for all participants and the teacher 

network only has access to local data, the Teacher network could indeed receive support from the student's 

accumulated understanding. 

Both the local teacher network and the global student network are trained using data from the local area. Both networks 

are taught using each other's predictions and hidden data from the surrounding area. Before being sent to the server, 

local gradients are decayed; once there, they are recreated and aggregated. After compiling global gradients, we divide 

them up and send them to our participants so they can use them to make local adjustments [9-10].  

The proposed FL framework introduces three objective functions to train the student and Teacher networks on the 

local IoT devices. This includes a dynamic reciprocal (DC) cost function to transmit experience from yield smooth 

labels, a dynamic hidden (DH) cost function to purify the latent representation. These functions are expressed as 

follows: 

ℒ𝑡,𝑖
𝑡 = CE(y𝑖 , y𝑖

𝑡) = − ∑ y𝑖
𝑖

a𝑖log (y𝑖
𝑡), (1) 

ℒ𝑠,𝑖
𝑡 = CE(y𝑖 , y𝑖

𝑠) = − ∑ y𝑖
𝑖

log (y𝑖
𝑠), (2) 

The DC losses for both Teacher and student networks (denoted as ℒ𝑡,𝑖
𝑑 and ℒ𝑠,𝑖

𝑑 ) are formulated as follows: 

ℒ𝑡,𝑖
𝑑 =

JL(y𝑖
𝑠, y𝑖

𝑡)

ℒ𝑡,𝑖
𝑡 + ℒ𝑠,𝑖

𝑡 , (3) 

ℒ𝑠,𝑖
𝑑 =

JL(y𝑖
𝑡 , y𝑖

𝑠)

ℒ𝑡,𝑖
𝑡 + ℒ𝑠,𝑖

𝑡 , (4) 

Whereas JL denotes the Jensen-Shannon loss, which is computed as follow calculated as follows  
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JL [𝑃, 𝑄] =
1

2
(KL [𝑃 ‖

𝑃 + 𝑄

2
] + KL [𝑄 ‖

𝑃 + 𝑄

2
]) (5) 

where KL signifies the Kullback–Leibler divergence, such that., KL(𝐏, 𝑄) = − ∑  𝑖 𝐏𝑖 log (
𝑸𝑖

𝑷𝑖
). In this manner, the 

purification concentration is low if the projections of the Teacher and the student are not dependable, which means 

that the subjective cost function of them are significant. The DH objective for both networks (denoted as ℒ𝑡,𝑖
ℎ  and ℒ𝑠,𝑖

ℎ ) 

are expressed as: 

ℒ𝑡,𝑖
ℎ = ℒ𝑠,𝑖

ℎ =
HL(H𝑖

𝑡 , W𝑖
ℎH𝑠) + HL(A𝑖

𝑡 , A𝑠)

ℒ𝑡,𝑖
𝑡 + ℒ𝑠,𝑖

𝑡 , (6) 

whereas 𝐻𝐿 denotes Huber Loss, which is defined as follows: 

𝐿𝛿 = {

1

2
(𝑃𝑖 − 𝑄𝑖)

2, 𝑖𝑓 |𝑌̃𝑖 − 𝑌𝑖| ≤ 𝛿

𝛿|𝑃𝑖 − 𝑄𝑖| −
1

2
𝛿2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

Which, the H𝑖
𝑡, A𝑖

𝑡, Hs, and 𝐴𝑠 correspondingly signify the latent representations and attentive maps in the 𝑖 − 𝑡ℎ local 

Teacher and the student, and 𝐖𝑖
ℎ  denote trainable linear revolution matrix. In this paper, we offer a method for 

controlling the magnitude of the DH loss depending on the extent to which both the student and the Teacher are 

accurate in their predictions. In addition to this, we additionally train the student formula based on the task-specific 

labels that are associated with each participant. This is prompted by the task-specific earlier purification architecture. 

As a result, the final objective necessary to calculate the parameters of client’s Teacher and student networks are 

implemented on each participant. Thus, the final losses, ℒ𝑡,𝑖and ℒ𝑡,𝑖 are devised as follows: 

ℒ𝑡,𝑖 = ℒ𝑡,𝑖
𝑑 + ℒ𝑡,𝑖

ℎ + ℒ𝑡,𝑖
𝑡 , (8) 

ℒ𝑠,𝑖 = ℒ𝑠,𝑖
𝑑 + ℒ𝑠,𝑖

ℎ + ℒ𝑠,𝑖
𝑡 , (9) 

The gradients 𝒈𝑖 of student network on the 𝑖 − 𝑡ℎ participant could be calculated according to ℒ𝑠,𝑖 , thru 𝐠𝑖 =
∂ℒ𝑠,𝑖

∂Θ𝑠 , 

wherever 𝛩𝑠 denote the parameter set of the student network. Each participant's local gradients, which are derived 

from the loss function, immediately cause an update to be made to the participant's local Teacher network). In addition 

to this, the server sends the averaged global gradients to each participant so that they can be updated locally. In order 

to bring its replica of the student network up to date, the participant must first decrypt the global gradients. This 

procedure would be carried out again and again until both the student network and the Teacher network converge. 

Take note that the Teacher network is employed for label prediction while the test phase is being performed. For the 

benefit of the reader, we have provided a comprehensive overview of the suggested network's operation (Algorithm 

1). 

Algorithm 1: Pseudocode of the proposed network for federated purification in IoT. 

1:  define the learning rate of teacher as 𝜼𝒕, and for students as ηs,  

2:  Deciding the participant number N, and hyperparameters 𝑻𝒔𝒕𝒂𝒓𝒕 and 𝑻𝒆𝒏𝒅  

3:  Loop on all participants concurrently do 

4:       set initial weights 𝚯𝒊
𝒕, 𝜣𝒔 

5:       reiterate 

6:           𝒈𝒊
𝒕, 𝒈𝒊= ClientUpdate (i) 

7:           𝚯𝒊
𝒕 ← 𝚯𝒊

𝒕 − 𝜼𝒕𝐠𝒊
𝒕 

8:           𝒈𝒊   ←   𝑼𝒊  ∑  𝒊 𝑽𝒊 

9:           Participants encrypt 𝑼𝒊  ∑  𝒊 𝑽𝒊 

10:         Participants upload 𝑼𝒊  ∑  𝒊 𝑽𝒊to the aggregator 

11:         Aggregator decrypts 𝑼𝒊  ∑  𝒊 𝑽𝒊 
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12:         Aggregator rebuilds gi 

13:         Global gradients g ← 0 

14:         Loop on all participants concurrently do 

15:               g = g + 𝒈𝒊 

16:         Terminate Loop 

17:          

18:        Aggregator encodes 𝑼, ∑,  𝑽 

19:         Aggregator broadcast 𝑼, ∑,  𝑽 to user participants 

20:         Participants decode U, ∑, V 

21:         Participants reconstruct g 

22:         𝜣𝒔   ←   𝜣𝒔   −  
𝜼𝒔𝒈

𝑵
 

23:    till Local networks converge 

24: Terminate Loop 

25:  ClientUpdate(i): 

26:    Calculate 𝓛𝒕,𝒊
𝒕  and 𝓛𝒔,𝒊

𝒕  

27:    Calculate 𝓛𝒕,𝒊
𝒅 , 𝓛𝒔,𝒊

𝒅 , 𝓛𝒕,𝒊
𝒉  and 𝓛𝒔,𝒊

𝒉  

28:    𝓛𝒊
𝒕 ← 𝓛𝒕,𝒊

𝒕 + 𝓛𝒕,𝒊
𝒅 + 𝓛𝒕,𝒊

𝒉  

29:    𝓛𝒊
𝒔 ← 𝓛𝒔,𝒊

𝒕 + 𝓛𝒔,𝒊
𝒅 + 𝓛𝒔,𝒊

𝒉  

30:    Calculate local Teacher gradients 𝐠𝒊
𝒕 from 𝓛𝒊

𝒕 

31:    Calculate local student gradients 𝒈𝒊 from 𝓛𝒊
𝒔 

32:  return 𝐠𝒊
𝒕, 𝐠𝒊 

 

3. Experimentation and Analysis  

 

A. Simulation Setup 

We test two different scenarios where user input is required. Individual news suggestion is the first assignment, where 

the MIND dataset is used in this exercise [14]. The second is ADR text presence recognition, as a binary classification 

problem. We randomly split the training data for these two datasets into four folds, with the assumption that each fold 

is privately kept by a separate participant, to network a situation in which private data is decentralised across several 

users. To assess how well various FL techniques deal with non-IID data, we assume that each of these datasets is 

maintained by a participant. The detailed statistics of the abovementioned datasets is given in Table 1. 

Table 1: The statistics of the datasets adopted in our simulations. 

Datasets Attribute Value 

MIND Users 1000000 

News 161013 

Impressions 15777377 

Clicks 24155470 

Training set 2186683 

Validation 365200 

Test set 2341619 

ADR # Positive samples 1355 

# Negative samples 15336 

Average text length 16.48 
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Multiple common metrics are adopted to evaluate the proposed framework, including area under the curve (AUC), 

Mean reciprocal rank (MRR), Discounted cumulative gain (i.e., nDCG@K) in case of MIND, and precision, recall, 

and F1-score in case of ADR. In mathematical terms, the above metrics can be defined as follows:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100,    (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100, (11) 

   

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 (𝐹1) = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
, 

(12) 

AUC =
∑p∈𝒫  ∑n∈𝒩  I[P(p) > P(n)]

|𝒫 ∥ 𝒩|
 

(13) 

MRR =
1

 Np

∑
i=1

Np  
1

Rank (pi)
 

(14) 

nDCG@ K =
∑i=1

K  (221 − 1)
1

log2(1 + i)

∑
i=1

𝑁p  
1

log2(1 + i)

 (15) 

FN and FP refer to False Negative and False Positive, while TP and TN signify the True Positive, and True Negative 

samples. 𝒫  and 𝒩  individually represent the groups of positive and negative examples. 𝐼[・] denote the marker 

function. 𝑟𝑖   represent the significance score of news having 𝑖 − 𝑡ℎ order, and t has a value of 𝑜𝑛𝑒 in the case of 

snapped news and zero for non-snapped news. 

 

The Shufflenet v2 [17] network is used as the local Teacher in our studies on every participant. In our investigations, 

we use a pre-trained language network's purification as a case study. Sub-networks of its first 4 or 2 Shufflenet layers 

are used as student networks. We use a language network for text categorization on the ADR dataset, and then we 

apply a dense layer. The starting and ending energy ratios are 0.90 and 0.97, correspondingly. The whole range of 

hyper-parameters is detailed in Table 2. Each experiment is performed 5 times to reduce the possibility of random 

error. 

Table 2: The best hyperparameters for the proposed framework 

Hyperparameters Value  

Attention query dimension 100 

Batch size  32 

Dropout rate 0.2 

Epochs 15 

Student network learning rate  0.0005 

Teacher network learning rate  0.00001 

Network hidden dimension 768 

Negative sampling ratio 4 

Optimization algorithm AdamW 

Oversampling ratio 2 
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B. Simulation Experiments 

The Ground edition of Shufflenet v2 is installed as the local Teacher method on each participant in our experimental 

tests. The sub-networks of the early four shufflenet  layers are used as student networks. We evaluate the proposed 

network against the state-of-the-art methods of federated purification in massive IoT applications. These methods 

include FD [18], FEDKD [19], DFKD [20], SKD [16], and Deepobfuscation [15]. On the MIND and ADR benchmark 

data, we detail the outcomes of our networks and the corresponding costs of communication in Table 3 and Table 4, 

respectively. It turns out that the locally hosted samples on a single participant might not be enough to learn a robust 

network, which is why Shufflenet v2 (Local) performs poorly contrasted with the baselines that learn in distributed 

fashion. While the results of Shufflenet v2 (Fed) are comparable to those of centralized learning, the high 

communication cost for network learning may limit its use in practical settings. Compression techniques that use either 

networks or gradients to shrink messages have been shown to be effective at lowering the price of communication, 

but at the expense of either substantial performance loss or only a marginal reduction in the amount of data transmitted. 

Unlike these other methods, the proposed network can even compete with the results of learning a large network using 

centralized data. 

Table 3: Comparison between the results of the proposed network against competing methods on the MIND dataset. 

Methods AUC MRR nDCG@5 nDCG@10 Communication 

cost (GB) 

FD [18] 70.44±0.12 34.32±0.2 37.92±0.3 47.9±0.1 1.28±0.23 

FEDKD [19] 71.53±0.24 36.12±0.03 38.96±1.23 44.73±0.05 2.77±0.22 

DFKD [20] 70.59±0.05 35.67±0.27 39.12±1.28 44.58±0.16 0.99±0.2 

SKD [16] 70.08±0.25 34.32±0.07 38.01±2.36 46.51±0.29 1.47±0.16 

Deepobfuscation 

[15] 

71.01±0.2 35.3±0.2 38.93±1.13 45.71±0.21 0.27±0.17 

Proposed 75.13±0.16 39.46±0.11 73.87±0.19 49.53±0.03 0.18±0.1 

 

Remarkably, the achieved improvements are demonstrated as not statistically significant (p > 0.05) according to a 

two-tailed t-test. This is because in the proposed network, multiple Teacher networks exist on separate decentralized 

participants, allowing for individualized instruction and the evaporation of irrelevant material. Further, in comparison 

to other FL -based methods, the proposed network is more communication-efficient, saving up to 96.7% and 97.9% 

of communication costs for MIND and ADR, respectively. This is because the proposed network is able to gain insight 

from more complex local teacher networks, thereby enhancing the network's performance, while also cutting down 

on communication costs through the sharing of updates from a more modest student network. The findings 

demonstrate that the proposed network can significantly cut down on the time spent communicating between nodes in 

a FL setup while maintaining promising network performance. 

Table 4. Comparison between the results of the proposed network against competing methods on ADR dataset. 

Methods Precision Recall F1-score Communication cost (GB) 

FD [18] 60.41±0.05 60.56±0.05 54.73±0.18 0.79±57.41 

FEDKD [19] 58.88±0.11 62.78±0.19 60.77±0.14 2.66±58.88 

DFKD [20] 58.22±0.3 61.6±0.12 59.86±0.17 0.78±58.22 

SKD [16] 56.8±0.12 59.83±0.14 58.28±0.13 0.42±56.8 

Deepobfuscation 

[15] 

59.53±0.23 62.27±0.07 60.87±0.11 0.09±59.53 

Proposed 64.08±0.13 67.31±0.29 65.66±0.18 0.08±58 
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Following this, we use the proposed network to test our adaptive RP method. We begin by contrasting the efficacy of 

Teacher and student strategies in This suggested network can be trained with RP or with no RP (See Figure. 1). We 

find that the performance of both the Teacher and student networks, regardless of their size, may be significantly 

improved through RP. The Teacher networks have more complex structures, and the student can learn from the 

information embedded in them. Since Teacher networks are learned using only locally available labelled data, a 

student's beneficial knowledge encoded by the student might provide valuable context for the Teacher to overcome 

this data scarcity. Based on our findings that local Teachers perform marginally better than their students, we decide 

to infer using Teacher networks during testing. 

Moreover, we contrast Variants of the suggested network are created by omitting either the RP objective, the DH 

objective, or the DW technique (See Figure 2). Please take into account that we document the results of teacher 

networks. When applied to the network, both adaptive RP and adaptive hidden losses show promise for enhancing its 

overall performance. When the DW technique is not used, performance also suffers. This is due to the fact that taking 

into account the accuracy of network predictions during purification might lead to better knowledge extraction and 

reduce the likelihood of overfitting. 

 

https://doi.org/10.54216/JISIoT.070207


Journal of Intelligent Systems and Internet of Things (JISIoT)                                  Vol. 07, No. 02, PP. 71-80, 2022 

 

79 
Doi: https://doi.org/10.54216/JISIoT.070207  
Received: June 19, 2022   Accepted: December 16, 2022 

 

4. Conclusion  

In conclusion, the Federated Knowledge purification (FKP) approach proposed in this paper is a promising solution 

to enable responsive Internet of Things (IoT) devices with limited resources. By leveraging a collaborative learning 

approach, the FKP framework enables IoT devices to learn from each other's experiences and improve their 

performance, while preserving the privacy of their data. The proposed approach utilizes a smaller model that is trained 

on the aggregated knowledge of the larger model, which is trained on a centralized server. The smaller model can then 

be deployed on IoT devices to enable responsive decision-making with limited computational resources. Experimental 

results demonstrate the effectiveness of the proposed FKP approach in improving the performance of IoT devices 

while maintaining the privacy of their data. The proposed approach also outperforms existing FL methods in terms of 

communication efficiency and convergence speed. 

References 

[1]. Yang, C., Xie, L., Qiao, S., & Yuille, A. (2018). Knowledge distillation in generations: More tolerant 

teachers educate better students. arXiv preprint arXiv:1805.05551. 

Figure 1: Illustration of Impact of mutual distillation on model performance on the student (left) and Teacher models(right). 

Figure 2: Efficacy of the adaptive MD methods in the proposed model with two layers (left) and four-layer settings(right).  

https://doi.org/10.54216/JISIoT.070207


Journal of Intelligent Systems and Internet of Things (JISIoT)                                  Vol. 07, No. 02, PP. 71-80, 2022 

 

80 
Doi: https://doi.org/10.54216/JISIoT.070207  
Received: June 19, 2022   Accepted: December 16, 2022 

[2]. Zhu, X., & Gong, S. (2018). Knowledge distillation by on-the-fly native ensemble. Advances in neural 

information processing systems, 31. 

[3]. Sau, B. B., & Balasubramanian, V. N. (2016). Deep model compression: Distilling knowledge from noisy 

teachers. arXiv preprint arXiv:1610.09650. 

[4]. Song, X., Feng, F., Han, X., Yang, X., Liu, W., & Nie, L. (2018, June). Neural compatibility modeling with 

attentive knowledge distillation. In The 41st International ACM SIGIR Conference on Research & 

Development in Information Retrieval (pp. 5-14). 

[5]. Yu, R., Li, A., Morariu, V. I., & Davis, L. S. (2017). Visual relationship detection with internal and 

external linguistic knowledge distillation. In Proceedings of the IEEE international conference on computer 

vision (pp. 1974-1982). 

[6]. Seo, H., Park, J., Oh, S., Bennis, M., & Kim, S. L. (2020). Federated knowledge distillation. arXiv preprint 

arXiv:2011.02367. 

[7]. Lee, S. H., Kim, D. H., & Song, B. C. (2018). Self-supervised knowledge distillation using singular value 

decomposition. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 335-350). 

[8]. Wu, C., Wu, F., Lyu, L., Huang, Y., & Xie, X. (2022). Communication-efficient federated learning via 

knowledge distillation. Nature communications, 13(1), 1-8. 

[9]. Liu, X., Wang, X., & Matwin, S. (2018, November). Improving the interpretability of deep neural networks 

with knowledge distillation. In 2018 IEEE International Conference on Data Mining Workshops 

(ICDMW) (pp. 905-912). IEEE. 

[10]. Lu, L., Guo, M., & Renals, S. (2017, March). Knowledge distillation for small-footprint highway 

networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 

(pp. 4820-4824). IEEE. 

[11]. Asami, T., Masumura, R., Yamaguchi, Y., Masataki, H., & Aono, Y. (2017, March). Domain 

adaptation of dnn acoustic models using knowledge distillation. In 2017 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP) (pp. 5185-5189). IEEE.  

[12]. Xu, Z., Hsu, Y. C., & Huang, J. (2017). Training shallow and thin networks for acceleration via 

knowledge distillation with conditional adversarial networks. arXiv preprint arXiv:1709.00513. 

[13]. Wang, T., Zhu, J. Y., Torralba, A., & Efros, A. A. (2018). Dataset distillation. arXiv preprint 

arXiv:1811.10959. 

[14]. Hou, S., Pan, X., Loy, C. C., Wang, Z., & Lin, D. (2018). Lifelong learning via progressive 

distillation and retrospection. In Proceedings of the European Conference on Computer Vision (ECCV) 

(pp. 437-452). 

[15]. Xu, H., Su, Y., Zhao, Z., Zhou, Y., Lyu, M. R., & King, I. (2018). Deepobfuscation: Securing the 

structure of convolutional neural networks via knowledge distillation. arXiv preprint arXiv:1806.10313. 

[16]. Ge, S., Zhao, S., Li, C., & Li, J. (2018). Low-resolution face recognition in the wild via selective 

knowledge distillation. IEEE Transactions on Image Processing, 28(4), 2051-2062. 

[17]. Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). Shufflenet v2: Practical guidelines for efficient 

cnn architecture design. In Proceedings of the European conference on computer vision (ECCV) (pp. 116-

131). 

[18]. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., & Kim, S. L. (2018). Communication-efficient 

on-device machine learning: Federated distillation and augmentation under non-iid private data. arXiv 

preprint arXiv:1811.11479. 

[19]. Yurochkin, Mikhail, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and 

Yasaman Khazaeni. "Probabilistic federated neural matching." (2018). 

[20]. Lopes, R. G., Fenu, S., & Starner, T. (2017). Data-free knowledge distillation for deep neural 

networks. arXiv preprint arXiv:1710.07535.  

 

https://doi.org/10.54216/JISIoT.070207

