310 193
Full Length Article
Volume 1 , Issue 1, PP: 05-15 , 2020


Recent Advances in Sensing Technologies for Smart Cities

Authors Names :   K. Shankar   1 *  

1  Affiliation :  Department of Computer Applications, Alagappa University, Karaikudi, India

    Email :  drkshankar@ieee.org

Doi   :  10.5281/zenodo.3738796

Abstract :

Generally, in smart cities, a group of sensing devices, cameras, data centers will exist that enables the civilian administrators to offer needed services in a rapid and efficient way. The effective usage of advanced technologies assists to the creation of intelligent transportation, smart healthcare, smart buildings, and so on. In case of smart building, holds the nature of gathering rainwater for future system, smart control, the probable enhancements allowed by the sensing technologies is high. The ubiquitous sensing offers various limitations which are technical or social in nature. In this chapter, an explanation of the different concepts involved to the topic of sensing in smart cities is provided. This chapter comprises a brief history, sensing platform, sensing technologies, challenges and its applications in a broader view. At the end of this chapter, it will enable the readers to clearly understand the concept of advanced sensing technologies in smart cities.

Keywords :

Smart city; IoT; Cloud; Sensing technologies

References :

[1]    Zheng, L., Kwok, W.M., Aquaro, V. and Qi, X., 2019, April. Digital Government, Smart Cities and Sustainable Development. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance (pp. 291-301). ACM.

[2]    Matos, A., Pinto, B., Barros, F., Martins, S., Martins, J. and Au-Yong-Oliveira, M., 2019, April. Smart Cities and Smart Tourism: What Future Do They Bring?. In World Conference on Information Systems and Technologies (pp. 358-370). Springer, Cham.

[3]    Ismagilova, E., Hughes, L., Dwivedi, Y.K. and Raman, K.R., 2019. Smart cities: Advances in research—An information systems perspective. International Journal of Information Management, 47, pp.88-100.

[4]    Cardullo, P. and Kitchin, R., 2019. Smart urbanism and smart citizenship: The neoliberal logic of ‘citizen-focused’smart cities in Europe. Environment and Planning C: Politics and Space, 37(5), pp.813-830.

[5]    Ueno, K.; Asai, T.; Amemiya, Y. Low-power temperature-to-frequency converter consisting of sub-threshold CMOS circuits for integrated smart temperature sensors. Sens. Actuators A 2011, 165, 132–137.

[6]    Ueno, K.; Hirose, T.; Asai, T.; Amemiya, Y. CMOS Smart Sensor for Monitoring the Quality of Perishables. IEEE J. Solid State Circuits 2007, 2, 798–803.

[7]    Liu, Y., Yang, C., Jiang, L., Xie, S. and Zhang, Y., 2019. Intelligent edge computing for IoT-based energy management in smart cities. IEEE Network, 33(2), pp.111-117.

[8]    Oprea, A.; Courbat, J.; Bârsan, N.; Briand, D.; Weimar, U.; de Rooij, N. Multi sensor platform on plastic foil for environmental monitoring. Procedia Chem. 2009, 1, 597–600. 

[9]    Park, C.; Lee, J. Intelligent Traffic Control Based on IEEE 802.11 DCF/PCF Mechanisms at Intersections. In Proceedings of IEEE Conference on Vehicular Technology(VTC 2010), San Francisco, CA, USA, 5–8 September 2011; pp. 1–4.

[10]  Hamaguchi, K.; Ma, Y.; Takada, M.; Nishijima, T.; Shimura, T. Telecommunications Systems in Smart Cities. Hitachi Rev. 2012, 61, 152–158.

[11]  Myung, H.; Lee, S.; Lee, B. Structural health monitoring robot using paired structured light. In Proceedings of IEEE International Symposium on Industrial Electronics (ISIE), Seoul, Korea, 5–8 July 2009; pp. 396–401.

[12]  Yun, J.; Won, K.-H. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems. Sensors 2012, 12, 13458–13470

[13]  Lloret, J.; Macías, E.; Suárez, A.; Lacuesta, R. Ubiquitous Monitoring of Electrical Household Appliances. Sensors 2012, 12, 15159–15191.

[14]  Klein, K.; Springer, P.; Black, W. Real-Time Ampacity and Ground Clearance Software for Integration into Smart Grid Technology. IEEE Trans. Power Deliv. 2010, 25, 1768–1777

[15]  Metje, N.; Chapman, D.; Cheneler, D.; Ward, M.; Thomas, A. Smart Pipes—Instrumented Water Pipes, Can this be made a reality? Sensors 2011, 11, 7455–7475.

[16]  Metje, N.; Chapman, D.; Cheneler, D.; Ward, M.; Thomas, A. Smart Pipes—Instrumented Water Pipes, Can this be made a reality? Sensors 2011, 11, 7455–7475. 45. Min, L.; Yan, W.; Wassell, I. Wireless sensor network: Water distribution monitoring system. In Proceedings of IEEE Radio and Wireless Symposium, Orlando, FL, USA, 22–24 January 2008; pp. 775–778. 

[17]  Klein, K.; Springer, P.; Black, W. Real-Time Ampacity and Ground Clearance Software for Integration into Smart Grid Technology. IEEE Trans. Power Deliv. 2010, 25, 1768–1777

[18]  Metje, N.; Chapman, D.; Walton, R.; Sadeghioon, A.; Ward, M. Real time condition of buried water pipes. Tunneling Undergr. Space Technol. 2012, 28, 315–320. 48. Gungor, V.; Lu, B.; Hancke, G.P. Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Trans. Ind. Electr. 2010, 57, 3557–3564.

[19]  Brown, L.; Grundlehner, B.; van de Molengraft, J.; Penders, J.; Gyselinckx, B. Body area network for monitoring autonomic nervous system responses. In Proceedings of 3rd International Conference on Pervasive Computing Technologies for Healthcare, London, UK, 1–3 April 2009; pp. 1–3.

[20]  Stoianov, I.; Nachman, L.; Madden S.; Tokmouline, T. PIPENET: A wireless sensor network for pipeline monitoring. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN '07), Cambridge, MA, USA, 25–27 April 2007; pp. 264–273.

[21]  Ali Asghar Rahmani Hosseinabadi, Javad Vahidi, Behzad Saemi, Arun Kumar Sangaiah, Mohamed Elhoseny, Extended Genetic Algorithm for solving open-shop scheduling problem, Soft Computing, Volume 23, Issue 13, pp 5099–5116 (https://doi.org/10.1007/s00500-018-3177-y)

[22]  K. Shankar, Mohamed Elhoseny, E. Dhiravida chelvi, SK. Lakshmanaprabu, Wanqing Wu, “An Efficient Optimal Key Based Chaos Function for Medical Image Security”, IEEE Access, Vol 6, No 1, Pages 77145-77154 (DOI: 10.1109/ACCESS.2018.2874026)

[23]  Muhammad Sajjad, Mansoor Nasir, Khan Muhammad, Siraj Khan, Zahoor Jan, Arun Kumar Sangaiah, Mohamed Elhoseny, Sung Wook Baik, "Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities", Future Generation Computer Systems, Elsevier, 2018 (DOI: https://doi.org/10.1016/j.future.2017.11.013)

[24]  Alaa Tharwat, Hani Mahdi,  Mohamed Elhoseny, Aboul Ella hassanien, Recognizing Human Activity in Mobile Crowdsensing Environment using Optimized k-NN Algorithm, Expert Systems With Applications, Volume 107, 1 October 2018, Pages 32-44 (https://doi.org/10.1016/j.eswa.2018.04.017)

[25]  Mohamed Abd El Aziz, Ahmed Monem Hemdan, Ahmed A. Ewees, Mohamed Elhoseny, Abdulaziz Shehab, Aboul Ella Hassanien, Shengwu Xiong, Prediction of Biochar Yield Using Adaptive Neuro-Fuzzy Inference System With Particle Swarm Optimization, In 2017 IEEE PES PowerAfrica Conference, June 27-30, Accra-Ghana, IEEE, 2017, Pages 115-120 (DOI: 10.1109/PowerAfrica.2017.7991209)

[26]  Mohamed Elhoseny, Abdulaziz Shehab and Xiaohui Yuan, Optimizing Robot Path in Dynamic Environments Using Genetic Algorithm and Bezier Curve,  Journal of Intelligent & Fuzzy Systems, vol. 33, no. 4, pp. 2305-2316, 2017, IOS-Press (DOI: 10.3233/JIFS-17348)

[27]  Xiaohui Yuan, Daniel Li, Deepankar Mohapatra, Mohamed Elhoseny, Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding", Computers and Electrical Engineering,  Volume 70, August 2018, Pages 813-825 (https://doi.org/10.1016/j.compeleceng.2017.12.026)

[28]  Rizk M. Rizk-Allah, Aboul Ella Hassanien, Mohamed Elhoseny, A Multi-Objective Transportation Model under Neutrosophic Environment, Computers and Electrical Engineering, Volume 69, July 2018, Pages 705-719, (https://doi.org/10.1016/j.compeleceng.2018.02.024)

[29]  Shankar K, Mohamed Elhoseny, Lakshmanaprabu S K, Ilayaraja M, Vidhyavathi RM, Mohamed A. Elsoud, Majid Alkhambashi, Optimal feature level fusion based ANFIS classifier for brain MRI image classification, Concurrency and Computation: Practice and Experience, First Online: 27 August 2018, (DOI: https://doi.org/10.1002/cpe.4887)

[30]  K. Shankar, Mohamed Elhoseny, “Trust Based Cluster Head Election of Secure Message Transmission in MANET Using Multi Secure Protocol with TDES”, Journal for Universal Computer Science, Vol. 25, No. 10, Page(s): 1221-1239, 2019.


[31]  Ashit Kumar Dutta, Mohamed Elhoseny, Vandna Dahiya, K. Shankar, “An efficient hierarchical clustering protocol for multihop Internet of vehicles communication”, Transactions on Emerging Telecommunications Technologies,  2019. In Press. DOI: https://doi.org/10.1002/ett.3690